Skip to main content
Log in

Modified k-ω model using kinematic vorticity for corner separation in compressor cascades

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A new method of modifying the conventional k-ω turbulence model for corner separation is proposed in this paper. The production term in the ω equation is modified using kinematic vorticity considering fluid rotation and deformation in complex geometric boundary conditions. The corner separation flow in linear compressor cascades is calculated using the original k-ω model, the modified k-ω model and the Reynolds stress model (RSM). The numerical results of the modified model are compared with the available experimental data, as well as the corresponding results of the original k-ω model and RSM. In terms of accuracy, the modified model, which significantly improves the performance of the original k-ω model for predicting corner separation, is quite competitive with the RSM. However, the modified model, which has considerably lower computational cost, is more robust than the RSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lei V M, Spakovszky Z S, Greitzer E M. A criterion for axial compressor hub-corner stall. J Turbomach, 2008, 130: 031006

    Article  Google Scholar 

  2. Wang Z N, Yuan X. Unsteady mechanism of compressor corner separation over a range of incidence based on hybrid LES/RANS. In: Proceedings of ASME Turbo Expo, San Antonio, Texas, USA, 2013. GT2013-95300

    Google Scholar 

  3. Denton J D. Loss mechanisms in turbomachines. J Turbomach, 1993, 115: 621–656

    Article  Google Scholar 

  4. Gbadebo S A, Cumpsty N A, Hynes T P. Three-dimensional separations in axial compressors. J Turbomach, 2005, 127: 331–339

    Article  Google Scholar 

  5. Gbadebo S A, Hynes T P, Cumpsty N A. Influence of surface roughness on three-dimensional separation in axial compressors. J Turbomach, 2004, 126: 455–463

    Article  Google Scholar 

  6. Gbadebo S A, Cumpsty N A, Hynes T P. Interaction of tip clearance flow and three-dimensional separations in axial compressors. J Turbomach, 2007, 129: 679–685

    Article  Google Scholar 

  7. Gao F, Ma W, Gherardo Z, et al. Large-eddy simulation of 3-D corner separation in a linear compressor Cascade. Phys Fluids, 2015, 27: 085105

    Article  Google Scholar 

  8. Liu Y W, Yan H, Lu L P. Investigation of corner separation in a linear compressor cascade using DDES. In: Proceedings of ASME Turbo Expo, Montréal, Canada, 2015. GT2015–42902

    Google Scholar 

  9. Liu Y W, Yan H, Lu L P. Numerical study of the effect of secondary vortex on three-dimensional corner separation in a compressor cascade. Int J Turbo Jet Eng, 2015, doi: 10.1515/tjj-2014-0039

    Google Scholar 

  10. Gbadebo S A, Cumpsty N A, Hynes T P. Control of three-dimensional separations in axial compressors by tailored boundary layer suction. J Turbomach, 2008, 130: 011004–8

    Article  Google Scholar 

  11. Liu Y W, Sun J J, Lu L P. Corner separation control by boundary layer suction applied to a highly loaded axial compressor cascade. Energies, 2014, 7: 7994–8007

    Article  Google Scholar 

  12. Guo S, Chen S W, Lu H W, et al. Enhancing aerodynamic performances of a high-turning compressor cascade via boundary layer suction. Sci China Tech Sci, 2010, 53: 2748–2755

    Article  Google Scholar 

  13. Li Y H, Wu Y, Zhou M, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation. Exp Fluids, 2010, 48: 1015–1023

    Article  Google Scholar 

  14. Zhong J J, Han J A, Liu Y M, et al. Numerical simulation of endwall fence on the secondary flow in compressor cascade. In: Proceedings of ASME Turbo Expo, Berlin, Germany, 2008. GT2008–50888

    Google Scholar 

  15. Ji L C, Tian Y, Li W W, et al, Numerical studies on improving performance of rotor-67 by blended blade and endwall technique. In: Proceedings of ASME Turbo Expo, Copenhagen, Denmark, 2012. GT2012–68535

    Google Scholar 

  16. Zhang H D, Han C, Ye T H, et al. Large eddy simulation of unconfined turbulent swirling flow. Sci China Tech Sci, 2015, 58: 1731–1744

    Article  Google Scholar 

  17. Wang Y F, Chen F, Liu H P, et al. Large eddy simulation of unsteady transitional flow on the low-pressure turbine blade. Sci China Tech Sci, 2014, 57: 1761–1768

    Article  Google Scholar 

  18. Liu B J, Zhang B, Liu Y W. Investigation of model development for deterministic correlations associated with impeller-diffuser interactions in centrifugal compressors. Sci China Tech Sci, 2015, 58: 499–450

    Article  Google Scholar 

  19. Smirnov P E, Menter F R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term. J Turbomach, 2009, 131: 0410104

    Article  Google Scholar 

  20. Liu Y W, Lu L P, Fang L, et al. Modification of Spalart–Allmaras model with consideration of turbulence energy backscatter using velocity helicity. Phys Lett A, 2011, 375: 2377–2381

    Article  Google Scholar 

  21. Liu Y W, Yu X J, Liu B J. Turbulence models assessment for largescale tip vortices in an axial compressor rotor. J Propul Power, 2008, 24: 15–25

    Article  Google Scholar 

  22. Wang D H, Lu L P, Li Q S. Improvement on S-A model for predicting corner separation based on turbulent transport nature. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, 2009. AIAA 2009-4931

    Google Scholar 

  23. Ma L, Lu L P, Fang J, et al. A study on turbulence transportation and modification of Spalart–Allmaras model for shock-wave/turbulent boundary layer interaction flow. Chin J Aeronaut, 2014, 27: 200–209

    Article  Google Scholar 

  24. Zhang Q, Yang Y. A new simpler rotation/curvature correction method for Spalart-Allmaras turbulence model. Chin J Aeronaut, 2013, 26: 326–333

    Article  Google Scholar 

  25. Rung T, Bunge U, Schatz M, et al. Restatement of the Spalart- Allmaras eddy-viscosity model in strain-adaptive formulation. AIAA J, 2003, 41: 1396–1399

    Article  Google Scholar 

  26. Cheng G C, Farokhi S. On turbulent flows dominated by curvature effects. J Fluids Eng, 1992, 114: 54–57

    Article  Google Scholar 

  27. Kok J C. Resolving the dependence on freestream values for the k-omega turbulence model. AIAA J, 2000, 38: 1292–1295

    Article  Google Scholar 

  28. Spalart P R, Shur M. On the sensitization of turbulence models to rotation and curvature. Aero Sci Tech, 1997, 5: 297–302

    Article  MATH  Google Scholar 

  29. Hellsten A. Some improvements in Menter’s k-omega SST turbulence model. In: 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, USA, 1998

    Google Scholar 

  30. Wilcox D C. Turbulence Modeling for CFD. 3rd ed. La Cacada, California: DCW Industries, Inc. 5354 Palm Drive, 2006. 124–128

    Google Scholar 

  31. Mentor F R. Zonal two equation k- turbulence models for aerodynamic flows. In: 24th Fluid Dynamics Conference, Orlando, Florida, 1993. AIAA 93-2906

    Google Scholar 

  32. Chen P P, Qiao W Y, Karsten L, et al. Location effect of boundary layer suction on compressor hub-corner separation. In: Proceedings of ASME Turbo Expo, Dusseldorf, Germany, 2014. GT2014–25043

    Google Scholar 

  33. Liesner K, Meyer R, Lemke M. On the efficiency of secondary flow suction in a compressor cascade. In: Proceedings of ASME Turbo Expo, Glasgow, UK, 2010. GT2010–22336

    Google Scholar 

  34. Hergt A, Meyer R, Engel K. Experimental investigation of flow control in compressor cascades. In: Proceedings of ASME Turbo Expo, Barcelona, Germany, 2006. GT2006-90415

    Google Scholar 

  35. Gmelin C, Thiele F, Liesner K. Investigations of secondary flow suction in a high speed compressor cascade. In: Proceedings of ASME Turbo Expo, British Columbia, Canada, 2011. GT2011–46479

    Google Scholar 

  36. Jeong J, Hussain F. On the identification of a vortex. J Fliud Mech, 1995, 285: 69–94

    Article  MathSciNet  MATH  Google Scholar 

  37. Truesdell C. The Kinematics of Vorticity. Bloomington, Indiana: Indiana University Press, 1954. 5

    MATH  Google Scholar 

  38. Melander M V, Hussain F. Polarized vorticity dynamics on a vortex column. Phys Fluids, 1993, 5: 1992

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yan, H., Fang, L. et al. Modified k-ω model using kinematic vorticity for corner separation in compressor cascades. Sci. China Technol. Sci. 59, 795–806 (2016). https://doi.org/10.1007/s11431-015-6005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-6005-y

Keywords

Navigation