Skip to main content
Log in

Fluorescent digital image correlation techniques in experimental mechanics

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

White light has often been used for surface illumination to acquire images for digital image correlation (DIC) analysis. In recent years, fluorescent imaging technique has been introduced for illumination, surface deformation and topography measurements with applications on various materials including biomaterials (biofilms, etc.) at the microscale. Traditional imaging, with the use of white light, encounters technical issues such as specular reflection owing to moisture or smooth shiny surfaces (e.g., metallic or glass surfaces). As an alternative to white light, fluorescent imaging serves as a solution to resolve the issues of specular reflection. Fluorescent DIC techniques, especially the fluorescent stereo DIC, allow 3D surface profilometry and deformation measurements at the microscale and submicron scale. Fluorescent stereo imaging under a microscope utilizes emission wavelengths that are different from illumination wavelengths to ensure clear images on any surface that might give reflections at certain angles when white light is used, allowing accurate metrology and deformation measurement. In addition microscopic fluorescent imaging provides nanoscale resolutions surpassing Abbe’s diffraction limit. This paper provides a review of the recent advances in fluorescent DIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis. Opt Eng, 1982, 21: 427–432

    Google Scholar 

  2. Sutton M A, Wolters W J, Peters W H, et al. Determination of displacements using an improved digital correlation method. Image Vision Comput, 1983, 1: 133–139

    Article  Google Scholar 

  3. Lu H, Cary P D. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Exp Mech, 2000, 40: 393–400

    Article  Google Scholar 

  4. Poissant J, Barthelat F. A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp Mech, 2010, 50: 353–364

    Article  Google Scholar 

  5. Tong W, Yao H, Xuan Y. An improved error evaluation in one-dimensional deformation measurements by linear digital image correlation. Exp Mech, 2011, 51: 1019–1031

    Article  Google Scholar 

  6. Wang H, Xie H, Dai X, et al. Fabrication of a DIC sensor for in-plane deformation measurement. Meas Sci Technol, 2013, 24: 065402

    Article  Google Scholar 

  7. Hu Z, Xie H, Hua T, et al. Advanced intensity correlation method for evaluating Poisson’s ratio of fiberlike material. Rev Sci Instrum, 2009, 80: 013105

    Article  Google Scholar 

  8. Hu Z, Du Y, Luo H, et al. Internal deformation measurement and force chain characterization of mason sand under confined compression using incremental digital volume correlation. Exp Mech, 2014, 54: 1575–1586

    Article  Google Scholar 

  9. Hu Z, Li G, Xie H, et al. Measurement of Young’s modulus and Poisson’s ratio of human hair using optical techniques. Proc SPIE, 2009, 7522: 75222Q

    Article  Google Scholar 

  10. Bay B K, Smith T S, Fyhrie D P, et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp Mech, 1999, 39: 217–226

    Article  Google Scholar 

  11. Hu Z, Luo H, Young W, et al. Three-dimensional internal large deformation measurement of PMI foam using incremental digital volume correlation. In: International Mechanical Engineering Congress and Exposition. Houston, 2012

    Google Scholar 

  12. Hu Z, Luo H, Bardenhagen S G, et al. Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp Mech, 2015, 55: 289–300

    Article  Google Scholar 

  13. Hu Z, Luo H, Lu H. Observation of the microstructural evolution in a structural polymeric foam using incremental digital volume correlation. In: Advancement of Optical Methods in Experimental Mechanics. Chicago, 2014. 159–166

    Google Scholar 

  14. Brodu N, Dijksman J A, Behringer R P. Spanning the scales of granular materials through microscopic force imaging. Nat Commun, 2015, 6: 6361

    Article  Google Scholar 

  15. Hu Z, Luo H, Du Y, et al. Correlation of microscale deformations to macroscopic mechanical behavior using incremental digital volume correlation of in-situ tomography. In: Jin H, Yoshida S, Lamberti L, et al, eds. Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, 2016. 125–137

    Chapter  Google Scholar 

  16. Tian L, Pan B, Cai Y, et al. Application of digital image correlation for long-distance bridge deflection measurement. Proc SPIE, 2013, 8769: 2V

    Google Scholar 

  17. Sun Y F, Pang J H L, Fan W. Nanoscale deformation measurement of microscale interconnection assemblies by a digital image correlation technique. Nanotechnology, 2007, 18: 395504

    Article  Google Scholar 

  18. Chen D T N, Wen Q, Janmey P A, et al. Rheology of soft materials. Annu Rev Condens Matter Phys, 2010, 1: 301–322

    Article  Google Scholar 

  19. Hao W, Yuan Y, Zhu J, et al. Effect of impact damage on the curved beam interlaminar strength of carbon/epoxy laminates. J Adhes Sci Tech, 2016, 30: 1189–1200

    Article  Google Scholar 

  20. Maskarinec S A, Franck C, Tirrell D A, et al. Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci USA, 2009, 106: 22108–22113

    Article  Google Scholar 

  21. Lu H, Vendroux G, Knauss W G. Surface deformation measurements of a cylindrical specimen by digital image correlation. Exp Mech, 1997, 37: 433–439

    Article  Google Scholar 

  22. Lyons J S, Liu J, Sutton M A. High-temperature deformation measurements using digital-image correlation. Exp Mech, 1996, 36: 64–70

    Article  Google Scholar 

  23. Pan B, Wu D F, Xia Y. High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Opt Lasers Eng, 2010, 48: 841–848

    Article  Google Scholar 

  24. Hao W, Zhu J, Zhu Q, et al. Displacement field denoising for hightemperature digital image correlation using principal component analysis. Mech Adv Mater Struct, 2017, 24: 830–839

    Article  Google Scholar 

  25. Ezzein F M, Bathurst R J. A transparent sand for geotechnical laboratory modeling. Geotech Test J, 2011, 34: 590–601

    Google Scholar 

  26. Lesniewska D, Wood D M. Observations of stresses and strains in a granular material. J Eng Mech, 2009, 135: 1038–1054

    Article  Google Scholar 

  27. Luo H, Du Y, Hu Z, et al. High-strain rate compressive behavior of dry mason sand under confinement. C Proc Soc Exp Mech, 2015, 1: 325–333

    Google Scholar 

  28. Pan B, Qian K M, Xie H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas Sci Technol, 2009, 20: 062001

    Article  Google Scholar 

  29. Orteu J J. 3-D computer vision in experimental mechanics. Opt Lasers Eng, 2009, 47: 282–291

    Article  Google Scholar 

  30. Luo P F, Chao Y J, Sutton M A, et al. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech, 1993, 33: 123–132

    Article  Google Scholar 

  31. Schreier H W, Garcia D, Sutton M A. Advances in light microscope stereo vision. Exp Mech, 2004, 44: 278–288

    Article  Google Scholar 

  32. Hu Z, Luo H, Du Y, et al. Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping. Opt Express, 2013, 21: 11808–11818

    Article  Google Scholar 

  33. Liu Y, Wang B, Yoshino M, et al. Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J Mech Phys Solids, 2005, 53: 2718–2741

    Article  MATH  Google Scholar 

  34. Hu Z, Xie H, Lu J, et al. Error evaluation technique for three-dimensional digital image correlation. Appl Opt, 2011, 50: 6239–6247

    Article  Google Scholar 

  35. Nelson D V, Makino A, Schmidt T. Residual stress determination using hole drilling and 3D image correlation. Exp Mech, 2006, 46: 31–38

    Article  Google Scholar 

  36. Moser R, Lightner J G. Using three-dimensional digital imaging correlation techniques to validate tire finite-element model. Exp Tech, 2007, 31: 29–36

    Article  Google Scholar 

  37. Morimoto Y, Fujigaki M. Automated analysis of 3-D shape and surface strain distributions of a moving object using stereo vision. Opt Lasers Eng, 1993, 18: 195–212

    Article  Google Scholar 

  38. Miller T, Schreier H, Reu P. High-speed DIC data analysis from a shaking camera system. In: The SEM Conference and Exposition on Experimental and Applied Mechanics. Springfield, 2017. 4–6

    Google Scholar 

  39. Medina-Cetina Z, Rechenmacher A. Image-based sensing of 3-D displacements for enhanced soil model calibration. In: GeoCongress 2006: Geotechnical Engineering in the Information Technology Age. 2006. 1–6

    Google Scholar 

  40. McGowan D M, Ambur D R, Hanna T G, et al. Evaluating the compressive response of notched composite panels using full-field displacements. J Aircr, 2001, 38: 122–129

    Article  Google Scholar 

  41. Orteu J J, Cutard T, Garcia D, et al. Application of stereovision to the mechanical characterisation of ceramic refractories reinforced with metallic fibres. Strain, 2007, 43: 96–108

    Article  Google Scholar 

  42. Richards R G, Wieland M, Textor M. Advantages of stereo imaging of metallic surfaces with low voltage backscattered electrons in a field emission scanning electron microscope. J Microsc, 2000, 199: 115–123

    Article  Google Scholar 

  43. Robert L, Nazaret F, Cutard T, et al. Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable. Exp Mech, 2007, 47: 761–773

    Article  Google Scholar 

  44. Schmidt T, Tyson J, Galanulis K. Full-field dynamic displacement and strain measurement-specific examples using advanced 3D image correlation. Photogrammetry: Part II. Exp Tech, 2003, 27: 22–26

    Google Scholar 

  45. Schmidt T, Tyson J, Galanulis K. Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: Part 1. Exp Tech, 2003, 27: 47–50

    Article  Google Scholar 

  46. Siebert T, Becker T, Spiltthof K, et al. High-speed digital image correlation: Error estimations and applications. Opt Eng, 2007, 46: 051004

    Article  Google Scholar 

  47. Xu T, Yoo J H, Babu S, et al. Characterization of the mechanical behavior of SU-8 at microscale by viscoelastic analysis. J Micromech Microeng, 2016, 26: 105001

    Article  Google Scholar 

  48. Synnergren P. Measurement of three-dimensional displacement fields and shape using electronic speckle photography. Opt Eng, 1997, 36: 2302–2310

    Article  Google Scholar 

  49. Synnergren P, Sjödahl M. A stereoscopic digital speckle photography system for 3-D displacement field measurements. Opt Lasers Eng, 1999, 31: 425–443

    Article  Google Scholar 

  50. Synnergren P, Goldrein H T. Dynamic measurements of internal threedimensional displacement fields with digital speckle photography and flash X rays. Appl Opt, 1999, 38: 5956–5961

    Article  Google Scholar 

  51. Synnergren P, Berglund T, Söderkvist I. Estimation of curl in paper using a combination of shape measurement and least-squares modelling. Opt Lasers Eng, 2001, 35: 105–120

    Article  Google Scholar 

  52. Chen X, Xu N, Yang L, et al. High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system. Meas Sci Technol, 2012, 23: 125603

    Article  Google Scholar 

  53. Tiwari V, Sutton M A, McNeill S R. Assessment of high speed imaging systems for 2D and 3D deformation measurements: Methodology development and validation. Exp Mech, 2007, 47: 561–579

    Article  Google Scholar 

  54. Genovese K, Casaletto L, Rayas J A, et al. Stereo-Digital Image Correlation (DIC) measurements with a single camera using a biprism. Opt Lasers Eng, 2013, 51: 278–285

    Article  Google Scholar 

  55. Yu L, Pan B. Color stereo-digital image correlation method using a single 3CCD color camera. Exp Mech, 2017, 57: 649–657

    Article  Google Scholar 

  56. Shao X, Dai X, Chen Z, et al. Calibration of stereo-digital image correlation for deformation measurement of large engineering components. Meas Sci Technol, 2016, 27: 125010

    Article  Google Scholar 

  57. Pierré J E, Passieux J C, Périé J N. Finite element stereo digital image correlation measurement for plate model. In: Yoshida S, Lamberti L, Sciammarella C, eds. Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer International Publishing, 2017. 199–202

    Chapter  Google Scholar 

  58. Tong W. Plastic surface strain mapping of bent sheets by image correlation. Exp Mech, 2004, 44: 502–511

    Article  Google Scholar 

  59. Murienne B J, Nguyen T D. A comparison of 2D and 3D digital image correlation for a membrane under inflation. Opt Lasers Eng, 2016, 77: 92–99

    Article  Google Scholar 

  60. Backman D, Liao M, Crichlow L, et al. The use of digital image correlation in a parametric study on the effect of edge distance and thickness on residual strains after hole cold expansion. J Strain Anal Eng Des, 2008, 43: 781–789

    Article  Google Scholar 

  61. Masters B R. The development of fluorescence microscopy. In: Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd., 2010. 1–9

    Google Scholar 

  62. Renz M. Fluorescence microscopy—A historical and technical perspective. Cytometry, 2013, 83: 767–779

    Article  Google Scholar 

  63. Berezin M Y, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev, 2010, 110: 2641–2684

    Article  Google Scholar 

  64. Asally M, Kittisopikul M, Rué P, et al. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci USA, 2012, 109: 18891–18896

    Article  Google Scholar 

  65. Alander J T, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imag, 2012, 2012: 1–26

    Article  Google Scholar 

  66. Northrup M A, Kulp T J, Angel S M. Fluorescent particle image velocimetry: Application to flow measurement in refractive indexmatched porous media. Appl Opt, 1991, 30: 3034–3040

    Article  Google Scholar 

  67. Grant I. Particle image velocimetry: A review. P I Mech Eng C-J Mec, 1997, 211: 55–76

    Article  Google Scholar 

  68. Wells C M, Parsons M. Cell Migration: Developmental Methods and Protocols. New York City: Humana Press, 2011

    Book  Google Scholar 

  69. Soni G V, Jaffar Ali B M, Hatwalne Y, et al. Single particle tracking of correlated bacterial dynamics. Biophys J, 2003, 84: 2634–2637

    Article  Google Scholar 

  70. Dinsmore A D, Weeks E R, Prasad V, et al. Three-dimensional confocal microscopy of colloids. Appl Opt, 2001, 40: 4152–4159

    Article  Google Scholar 

  71. Ward K, Fan Z H. Mixing in microfluidic devices and enhancement methods. J Micromech Microeng, 2015, 25: 094001

    Article  Google Scholar 

  72. Wu M, Roberts J W, Buckley M. Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids, 2005, 38: 461–465

    Article  Google Scholar 

  73. Berfield T A, Patel J K, Shimmin R G, et al. Fluorescent image correlation for nanoscale deformation measurements. Small, 2006, 2: 631–635

    Article  Google Scholar 

  74. Berfield T A, Patel J K, Shimmin R G, et al. Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech, 2007, 47: 51–62

    Article  Google Scholar 

  75. Berfield T A, Carroll Iii J F, Payne D A, et al. Thermal strain measurement in sol-gel lead zirconate titanate thin films. J Appl Phys, 2009, 106: 123501–123501

    Article  Google Scholar 

  76. Hamilton A R, Sottos N R, White S R. Local strain concentrations in a microvascular network. Exp Mech, 2010, 50: 255–263

    Article  Google Scholar 

  77. Sottosa N, Hamiltonb A, Olugebefolab S, et al. Local strain concentrations in a reinforced microvascular network. In: ICCM-17th International Conference on Composite Materials. Edinburgh, 2009

    Google Scholar 

  78. Huang J, Peng X, Qin L, et al. Determination of cellular tractions on elastic substrate based on an integral Boussinesq solution. J Biomech Eng, 2009, 131: 061009

    Article  Google Scholar 

  79. Samuel B A, Demirel M C, Haque A. High resolution deformation and damage detection using fluorescent dyes. J Micromech Microeng, 2007, 17: 2324–2327

    Article  Google Scholar 

  80. Samuel B, Haque M. In-situ nanoscale single fiber fragmentation using fluorescence microscopy. In: ASME 2007 International Mechanical Engineering Congress and Exposition. Seattle, 2007. 1017–1020

    Google Scholar 

  81. Jones E M C, Silberstein M N, White S R, et al. In situ measurements of strains in composite battery electrodes during electrochemical cycling. Exp Mech, 2014, 54: 971–985

    Article  Google Scholar 

  82. Huang J Y, Zhu T, Pan X, et al. A high-efficiency digital image correlation method based on a fast recursive scheme. Meas Sci Technol, 2010, 21: 035101

    Article  Google Scholar 

  83. Huang J, Pan X, Peng X, et al. High-efficiency cell-substrate displacement acquisition via digital image correlation method using basis functions. Opt Lasers Eng, 2010, 48: 1058–1066

    Article  Google Scholar 

  84. Huang J, Zhu T, Qin L, et al. Study on mechanical interactions between single cardiac myocyte and elastic substrate. Acta Mech Solid Sin, 2009, 22: 563–570

    Article  Google Scholar 

  85. McGray C D, Stavis S M, Giltinan J, et al. MEMS kinematics by super-resolution fluorescence microscopy. J Microelectromech Syst, 2013, 22: 115–123

    Article  Google Scholar 

  86. Olugebefola S C, Hamilton A R, Fairfield D J, et al. Structural reinforcement of microvascular networks using electrostatic layer-bylayer assembly with halloysite nanotubes. Soft Matter, 2014, 10: 544–548

    Article  Google Scholar 

  87. Franck C, Hong S, Maskarinec S A, et al. Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech, 2007, 47: 427–438

    Article  Google Scholar 

  88. Li S, Xu Z, Reading I, et al. Three dimensional sidewall measurements by laser fluorescent confocal microscopy. Opt Express, 2008, 16: 4001–4014

    Article  Google Scholar 

  89. Chen W, Zhang J Z, Joly A G. Optical properties and potential applications of doped semiconductor nanoparticles. J Nanosci Nanotech, 2004, 4: 919–947

    Article  Google Scholar 

  90. Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett, 1994, 19: 780–782

    Article  Google Scholar 

  91. Betzig E, Trautman J K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 1992, 257: 189–195

    Article  Google Scholar 

  92. Hell S W. Far-field optical nanoscopy. Science, 2007, 316: 1153–1158

    Article  Google Scholar 

  93. Hu Z, Luo H, Lu H. Highly accurate 3D shape and deformation measurements using fluorescent stereo microscopy. In: Advancement of Optical Methods in Experimental Mechanics, Vol 3: Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics. Costa Mesa, 2016. 85–93

    Google Scholar 

  94. Hu Z, Xu T, Luo H, et al. Measurement of thickness and profile of a transparent material using fluorescent stereo microscopy. Opt Express, 2016, 24: 29822

    Article  Google Scholar 

  95. Sutton M A, Ke X, Lessner S M, et al. Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation. J Biomed Mater Res, 2008, 86A: 569

    Google Scholar 

  96. Compston P, Styles M, Kalyanasundaram S. Low energy impact damage modes in aluminum foam and polymer foam sandwich structures. Jnl Sandw Struct Mater, 2006, 8: 365–379

    Article  Google Scholar 

  97. Ramos T, Furtado A, Eslami S, et al. 2D and 3D digital image correlation in civil engineering-measurements in a masonry wall. Procedia Eng, 2015, 114: 215–222

    Article  Google Scholar 

  98. Daly S H. Digital image correlation in experimental mechanics for aerospace materials and structures. In: Encyclopedia of Aerospace Engineering. 2010

    Google Scholar 

  99. Barthelat F, Wu Z, Prorok B C, et al. Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation. Exp Mech, 2003, 43: 331–340

    Article  Google Scholar 

  100. Pankow M, Justusson B, Waas A M. Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates. Appl Opt, 2010, 49: 3418–3427

    Article  Google Scholar 

  101. Wang Z, Kieu H, Nguyen H, et al. Digital image correlation in experimental mechanics and image registration in computer vision: Similarities, differences and complements. Opt Lasers Eng, 2015, 65: 18–27

    Article  Google Scholar 

  102. Ning J, Braxton V G, Wang Y, et al. Speckle patterning of soft tissues for strain field measurement using digital image correlation: Preliminary quality assessment of patterns. Microsc Microanal, 2011, 17: 81–90

    Article  Google Scholar 

  103. Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robot Automat, 1987, 3: 323–344

    Article  Google Scholar 

  104. Zhang Z Y. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Machine Intell, 2000, 22: 1330–1334

    Article  Google Scholar 

  105. Sutton M, Orteu J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Boston: Springer Verlag, 2009

    Google Scholar 

  106. Yoneyama S, Kikuta H, Kitagawa A, et al. Lens distortion correction for digital image correlation by measuring rigid body displacement. Opt Eng, 2006, 45: 023602

    Article  Google Scholar 

  107. Yoneyama S, Kitagawa A, Kitamura K, et al. In-plane displacement measurement using digital image correlation with lens distortion correction. JSME Int J Ser A, 2006, 49: 458–467

    Article  Google Scholar 

  108. Bougue J Y. Camera calibration toolbox for matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/. 2010

    Google Scholar 

  109. Ke X D, Schreier H W, Sutton M A, et al. Error assessment in stereobased deformation measurements. Exp Mech, 2011, 51: 423–441

    Article  Google Scholar 

  110. Schreier H W, Sutton M A. Calibrated sensor and method for calibrating same. US Patent, 7133570B1, 2006–11-07

    Google Scholar 

  111. Press W H, Teukolsky S A, Vetterling W T, et al. The Art of Scientific Computing. 3rd ed. Cambridge: Cambridge University Press, 2007

    MATH  Google Scholar 

  112. Wang Y Q, Sutton M A, Bruck H A, et al. Quantitative error assessment in pattern matching: Effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain, 2009, 45: 160–178

    Article  Google Scholar 

  113. Pan B, Lu Z X, Xie H M. Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt Lasers Eng, 2010, 48: 469–477

    Article  Google Scholar 

  114. Lecompte D, Smits A, Bossuyt S, et al. Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng, 2006, 44: 1132–1145

    Article  Google Scholar 

  115. Hua T, Xie H, Wang S, et al. Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Opt Laser Tech, 2011, 43: 9–13

    Article  Google Scholar 

  116. Zhu J, Xie H, Hu Z, et al. Residual stress in thermal spray coatings measured by curvature based on 3D digital image correlation technique. Surf Coatings Tech, 2011, 206: 1396–1402

    Article  Google Scholar 

  117. Yang X, Liu Z, Xie H. A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock. Meas Sci Technol, 2012, 23: 105604

    Article  Google Scholar 

  118. Zhu J, Yan G, He G, et al. Fabrication and optimization of microscale speckle patterns for digital image correlation. Meas Sci Technol, 2016, 27: 015203

    Article  Google Scholar 

  119. Chen Z, Quan C, Zhu F, et al. A method to transfer speckle patterns for digital image correlation. Meas Sci Technol, 2015, 26: 095201

    Article  Google Scholar 

  120. Lionello G, Sirieix C, Baleani M. An effective procedure to create a speckle pattern on biological soft tissue for digital image correlation measurements. J Mech Behav Biomed Mater, 2014, 39: 1–8

    Article  Google Scholar 

  121. Scrivens W A, Luo Y, Sutton M A, et al. Development of patterns for digital image correlation measurements at reduced length scales. Exp Mech, 2007, 47: 63–77

    Article  Google Scholar 

  122. Tanaka Y, Naito K, Kishimoto S, et al. Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations. Nanotechnology, 2011, 22: 115704

    Article  Google Scholar 

  123. Li Y J, Xie H M, Luo Q, et al. Fabrication technique of micro/nanoscale speckle patterns with focused ion beam. Sci China-Phys Mech Astron, 2012, 55: 1037–1044

    Article  Google Scholar 

  124. Lunt A J G, Korsunsky A M. A review of micro-scale focused ion beam milling and digital image correlation analysis for residual stress evaluation and error estimation. Surf Coatings Tech, 2015, 283: 373–388

    Article  Google Scholar 

  125. He Q, Luo Z X, Chen X Y. Comparison of residual stress measurement in thin films using surface micromachining method. Thin Solid Films, 2008, 516: 5318–5323

    Article  Google Scholar 

  126. Zhu R, Xie H, Xue Y, et al. Fabrication of speckle patterns by focused ion beam deposition and its application to micro-scale residual stress measurement. Meas Sci Technol, 2015, 26: 095601

    Article  Google Scholar 

  127. Zhu J G, Xie H M, Li Y J, et al. Interfacial residual stress analysis of thermal spray coatings by miniature ring-core cutting combined with DIC method. Exp Mech, 2014, 54: 127–136

    Article  Google Scholar 

  128. Dong Y L, Pan B. A review of speckle pattern fabrication and assessment for digital image correlation. Exp Mech, 2017, 21: 1

    Google Scholar 

  129. Schreier H W. Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics. Dissertation of Docteral Degree. South Carolina: University of South Carolina, 2003

    Google Scholar 

  130. Pan B, Xie H M, Wang Z Y. Equivalence of digital image correlation criteria for pattern matching. Appl Opt, 2010, 49: 5501–5509

    Article  Google Scholar 

  131. Schreier H W, Braasch J R, Sutton M A. Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng, 2000, 39: 2915–2921

    Article  Google Scholar 

  132. Schreier H W, Sutton M A. Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech, 2002, 42: 303–310

    Article  Google Scholar 

  133. Pan B, Xie H, Wang Z, et al. Study on subset size selection in digital image correlation for speckle patterns. Opt Express, 2008, 16: 7037–7048

    Article  Google Scholar 

  134. Wang Y, Lava P, Reu P, et al. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements. Strain, 2016, 52: 110–128

    Article  Google Scholar 

  135. Wang Y, Lava P, Reu P, et al. Theoretical analysis on the measurement errors of local 2D DIC: Part II assessment of strain errors of the local smoothing method-approaching an answer to the overlap question. Strain, 2016, 52: 129–147

    Article  Google Scholar 

  136. Liu X Y, Li R L, Zhao H W, et al. Quality assessment of speckle patterns for digital image correlation by Shannon entropy. Optik-Int J Light Electron Opt, 2015, 126: 4206–4211

    Article  Google Scholar 

  137. Zhou P, Goodson K E. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt Eng, 2001, 40: 1613–1620

    Article  Google Scholar 

  138. Reu P L. Experimental and numerical methods for exact subpixel shifting. Exp Mech, 2011, 51: 443–452

    Article  Google Scholar 

  139. Zhu R, Xie H, Hu Z, et al. Performances of different subset shapes and control points in subset-based digital image correlation and their applications in boundary deformation measurement. Appl Opt, 2015, 54: 1290–1301

    Article  Google Scholar 

  140. Hu Z, Xie H, Lu J, et al. Study of the performance of different subpixel image correlation methods in 3D digital image correlation. Appl Opt, 2010, 49: 4044–4051

    Article  Google Scholar 

  141. Pan B. Reliability-guided digital image correlation for image deformation measurement. Appl Opt, 2009, 48: 1535–1542

    Article  Google Scholar 

  142. Guo Y B, Yao Y, Di X G, et al. Research on structural parameter optimization of binocular vision measuring system for parallel mechanism. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation. Luoyang, 2006. 1131–1135

    Google Scholar 

  143. Zhang K, Xu B, Tang L X, et al. Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms. Int J Adv Manuf Technol, 2006, 29: 722–728

    Article  Google Scholar 

  144. Becker T, Splitthof K, Siebert T, et al. Error estimations of 3D digital image correlation measurements. In: Proceedings Volume 6341, Speckle06: Speckles, From Grains to Flowers. Nimes, 2006

    Book  Google Scholar 

  145. Siebert T, Becker T, Spiltthof K, et al. Error estimations in digital image correlation technique. Appl Mech Mater, 2007, 7–8: 265–270

    Article  Google Scholar 

  146. Wang Y Q, Sutton M A, Ke X D, et al. On error assessment in stereobased deformation measurements. Exp Mech, 2011, 51: 405–422

    Article  Google Scholar 

  147. Wang Y. Error assessment in 3D computer vision. Dissertation of Docteral Degree. Columbia: University of South Carolina, 2010

    Google Scholar 

  148. Reu P L. A study of the influence of calibration uncertainty on the global uncertainty for digital image correlation using a Monte Carlo approach. Exp Mech, 2013, 53: 1661–1680

    Article  Google Scholar 

  149. Pan B, Dafang W, Yong X. Incremental calculation for large deformation measurement using reliability-guided digital image correlation. Opt Lasers Eng, 2012, 50: 586–592

    Article  Google Scholar 

  150. Liang J, Luo H, Yokell Z, et al. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection. Hearing Res, 2016, 339: 1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenXing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xu, T., Wang, X. et al. Fluorescent digital image correlation techniques in experimental mechanics. Sci. China Technol. Sci. 61, 21–36 (2018). https://doi.org/10.1007/s11431-017-9103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9103-8

Keywords

Navigation