Skip to main content
Log in

Performance optimization of thermionic refrigerators based on van der Waals heterostructures

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, an irreversible thermionic refrigerator model based on van der Waals heterostructure with various irreversibilities is established by utilizing combination of non-equilibrium thermodynamics and finite time thermodynamics. The basic performance characteristics of the refrigerator are obtained. The effects of key factors, such as bias voltages, Schottky barrier heights and heat leakages, on the performance are studied. Results show that cooling rates and coefficients of performances (COPs) can attain the double maximum with proper modulation of barrier heights and bias voltages. Increasing cross-plane thermal resistance as well as decreasing electrode-reservoir thermal resistance and reservoir-reservoir thermal resistance can enhance the performance of the device. The optimal performance region is the interval between the maximum cooling rate point and the maximum COP point. By modulating the bias voltage, the working state of the device can fall into the optimal performance region. The optimal performance of the refrigerator when using single layer graphene and a few layers graphene as electrode material is also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatsopoulos G N, Kaye J. Measured thermal efficiencies of a diode configuration of a thermo electron engine. J Appl Phys, 1958, 29: 1124–1125

    Article  Google Scholar 

  2. Houston J M. Theoretical efficiency of the thermionic energy converter. J Appl Phys, 1959, 30: 481–487

    Article  Google Scholar 

  3. Abdul Khalid K A, Leong T J, Mohamed K. Review on thermionic energy converters. IEEE Trans Electron Devices, 2016, 63: 2231–2241

    Article  Google Scholar 

  4. Hatsopoulos G N, Gyftopoulos E P. Thermionic Energy Conversion. Volume I. Processes and Devices. Cambridge: MIT Press, 1974

    Google Scholar 

  5. Wu C. Optimal power from a radiating solar-powered thermionic engine. Energy Convers Manage, 1992, 33: 279–282

    Article  Google Scholar 

  6. Chen L G, Ding Z M, Sun F R. Performance analysis of a vacuum thermionic refrigerator with external heat transfer. J Appl Phys, 2010, 107: 104507

    Article  Google Scholar 

  7. Chen L G, Ding Z M, Zhou J L, et al. Thermodynamic performance optimization for an irreversible vacuum thermionic generator. Eur Phys J Plus, 2017, 132: 293

    Article  Google Scholar 

  8. Wang Y, Su S H, Lin B H, et al. Parametric design criteria of an irreversible vacuum thermionic generator. J Appl Phys, 2013, 053502

  9. Zhang X, Pan Y Z, Chen J C. Parametric optimum design of a graphene-based thermionic energy converter. IEEE Trans Electron Devices, 2017, 64: 4594–4598

    Article  Google Scholar 

  10. Hishinuma Y, Moyzhes B Y, Geballe T H, et al. Vacuum thermionic refrigeration with a semiconductor heterojunction structure. Appl Phys Lett, 2002, 81: 4242–4244

    Article  Google Scholar 

  11. Shakouri A, Bowers J E. Heterostructure integrated thermionic coolers. Appl Phys Lett, 1997, 71: 1234–1236

    Article  Google Scholar 

  12. Mahan G D, Sofo J O, Bartkowiak M. Multilayer thermionic refrigerator and generator. J Appl Phys, 1998, 83: 4683–4689

    Article  Google Scholar 

  13. Ding Z M, Chen L G, Sun F R. Performance analysis and optimization of a single-barrier solid-state thermionic refrigerator with external heat transfer. Heat Transfer Eng, 2012, 33: 693–703

    Article  Google Scholar 

  14. Zebarjadi M. Solid-state thermionic power generators: An analytical analysis in the nonlinear regime. Phys Rev Appl, 2017, 8: 14008

    Article  Google Scholar 

  15. Humphrey T E, O’Dwyer M F, Zhang C, et al. Solid-state thermionics and thermoelectrics in the ballistic transport regime. J Appl Phys, 2005, 026108

  16. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Article  Google Scholar 

  17. Champier D. Thermoelectric generators: A review of applications. Energy Convers Manage, 2017, 140: 167–181

    Article  Google Scholar 

  18. He J, Tritt T M. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357: eaak9997

    Article  Google Scholar 

  19. Mao J, Liu Z H, Zhou J W, et al. Advances in thermoelectrics. Adv Phys, 2018, 67: 69–147

    Article  Google Scholar 

  20. Huang S, Wang Z, Xiong R, et al. Significant enhancement in thermoelectric performance of Mg3Sb2 from bulk to two-dimensional mono layer. Nano Energy, 2019, 62: 212–219

    Article  Google Scholar 

  21. Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, et al. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 2019, 186: 115849

    Article  Google Scholar 

  22. Mahan G D. Thermionic refrigeration. J Appl Phys, 1994, 76: 4362–4366

    Article  Google Scholar 

  23. Yuan H Y, Chang S, Bargatin I, et al. Engineering ultra-low work function of graphene. Nano Lett, 2015, 15: 6475–6480

    Article  Google Scholar 

  24. Yuan H Y, Riley D C, Shen Z X, et al. Back-gated graphene anode for more efficient thermionic energy converters. Nano Energy, 2017, 32: 67–72

    Article  Google Scholar 

  25. Geim A K, Grigorieva I V. van der Waals heterostructures. Nature, 2013, 499: 419–425

    Article  Google Scholar 

  26. Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439

    Article  Google Scholar 

  27. Liu Y, Huang Y, Duan X F, van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567: 323–333

    Article  Google Scholar 

  28. Li J, Yang X, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579: 368–374

    Article  Google Scholar 

  29. Liang S J, Liu B, Hu W, et al. Thermionic energy conversion based on graphene van der Waals heterostructures. Sci Rep, 2017, 7: 46211

    Article  Google Scholar 

  30. Wang X M, Zebarjadi M, Esfarjani K. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures. Nanoscale, 2016, 8: 14695–14704

    Article  Google Scholar 

  31. Wang X M, Zebarjadi M, Esfarjani K. High-performance solid-state thermionic energy conversion based on 2D van der Waals heterostructures: A first-principles study. Sci Rep, 2018, 8: 9303–9309

    Article  Google Scholar 

  32. Rosul M G, Lee D, Olson D H, et al. Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures. Sci Adv, 2019, 5: eaax7827

    Article  Google Scholar 

  33. Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am J Phys, 1975, 43: 22–24

    Article  Google Scholar 

  34. Andresen B, Salamon P, Berry R S. Thermodynamics in finite time. Phys Today, 1984, 37: 62–70

    Article  Google Scholar 

  35. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79: 1191–1218

    Article  Google Scholar 

  36. Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilibrium ThermoDyn, 1999, 24: 327–359

    MATH  Google Scholar 

  37. Wu C, Chen L G, Chen J C. Recent Advances in Finite Time Thermodynamics. New York: Nova Science Publishers, 1999

    Google Scholar 

  38. Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Ed, 2011, 50: 2690–2704

    Article  Google Scholar 

  39. Ding Z M, Chen L G, Sun F R. Optimum performance analysis of a combined thermionic-thermoelectric refrigerator with external heat transfer. J Energy Institute, 2015, 88: 169–180

    Article  Google Scholar 

  40. Ding Z M, Chen L G, Ge Y L, et al. Performance analysis for an irreversible combined thermionic-thermoelectric generator with finite rate heat transfer. Environ Eng Manag J, 2015, 14: 97–108

    Article  Google Scholar 

  41. Ge Y L, Chen L G, Sun F R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18: 139

    Article  Google Scholar 

  42. Wang W H, Sun F R, Ding Z M, et al. Progress in study on finite time thermodynamic performance optimization for three kinds of microscopic energy conversion systems (in Chinese). Sci Sin Tech, 2015, 45: 889–918

    Article  Google Scholar 

  43. Chen L G, Xia S J. Progresses in generalized thermodynamic dynamic-optimization of irreversible processes (in Chinese). Sci Sin Tech, 2019, 49: 981–1022

    Article  Google Scholar 

  44. Chen L G, Xia S J, Feng H J. Progress in generalized thermodynamic dynamic-optimization of irreversible cycles (in Chinese). Sci Sin Tech, 2019, 49: 1223–1267

    Google Scholar 

  45. Qiu S S, Ding Z M, Chen L G, et al. Optimal performance region of energy selective electron cooling devices consisting of three reservoirs. Eur Phys J Plus, 2019, 134: 273

    Article  Google Scholar 

  46. Shen J F, Chen L G, Ge Y L, et al. Optimum ecological performance of irreversible reciprocating Maisotsenko-Brayton cycle. Eur Phys J Plus, 2019, 134: 293

    Article  Google Scholar 

  47. Zhang X M, Peng W L, Su G Z, et al. Thermionic energy conversion based on 3D Dirac semimetals. J Phys D-Appl Phys, 2018, 51: 405501

    Article  Google Scholar 

  48. Pan Y Z, Lin B H. Performance analysis of irreversible thermionic refrigerators. J Quanzhou Normal Univ, 2008, 26: 41–43

    Google Scholar 

  49. Zhang L L, Han P, Jin K, et al. A numerical design of opto-thermionic refrigeration with perovskite oxide heterostructures. J Phys D-Appl Phys, 2009, 42: 125109

    Article  Google Scholar 

  50. O’Dwyer M F, Humphrey T E, Lewis R A, et al. Efficiency in nanometre gap vacuum thermionic refrigerators. J Phys D-Appl Phys, 2009, 42: 035417

    Article  Google Scholar 

  51. Schwede J W, Bargatin I, Riley D C, et al. Photon-enhanced thermionic emission for solar concentrator systems. Nat Mater, 2010, 9: 762–767

    Article  Google Scholar 

  52. Wang Y, Liao T J, Zhang Y C, et al. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices. J Appl Phys, 2016, 119: 045106

    Article  Google Scholar 

  53. Liao T J. Improved design of a photon enhanced thermionic energy converter. IEEE Electron Device Lett, 2019, 40: 115–118

    Article  Google Scholar 

  54. Lin B H, Liao T J. Investigation on the performance of a photon-enhanced thermionic emission solar cell (in Chinese). Sci Sin Tech, 2019, 49: 873–879

    Article  Google Scholar 

  55. Yang Z M, Lin B H, Liao T J. Performance characteristics and optimal analysis of a fuel cell-vacuum thermionic generator hybrid system (in Chinese). Sci Sin Tech, 2014, 44: 1173–1184

    Article  Google Scholar 

  56. Huang C K, Pan Y Z, Wang Y, et al. An efficient hybrid system using a thermionic generator to harvest waste heat from a reforming molten carbonate fuel cell. Energy Convers Manage, 2016, 121: 186–193

    Article  Google Scholar 

  57. Zhang H C, Wang J T, Wang F, et al. Performance assessment of an advanced triple-cycle system based upon solid oxide fuel cells, vacuum thermionic generators and absorption refrigerators. Energy Conver Manag, 2019, 193: 63–74

    Article  Google Scholar 

  58. Hou S J, Zhang H C. A novel solar assisted vacuum thermionic generator-absorption refrigerator cogeneration system producing electricity and cooling. Energy Convers Manage, 2019, 187: 83–92

    Article  Google Scholar 

  59. Moyzhes B Y, Geballe T H. The thermionic energy converter as a topping cycle for more efficient heat engines—New triode designs with a longitudinal magnetic field. J Phys D-Appl Phys, 2005, 38: 782–786

    Article  Google Scholar 

  60. Datas A. Hybrid thermionic-photovoltaic converter. Appl Phys Lett, 2016, 108: 143503

    Article  Google Scholar 

  61. Datas A, Vaillon R. Thermionic-enhanced near-field thermophotovoltaics. Nano Energy, 2019, 61: 10–17

    Article  Google Scholar 

  62. Bellucci A, Mastellone M, Serpente V, et al. Photovoltaic anodes for enhanced thermionic energy conversion. ACS Energy Lett, 2020, 5: 1364–1370

    Article  Google Scholar 

  63. Zhang X, Ang Y S, Du J Y, et al. Graphene-based thermionic-thermoradiative solar cells: Concept, efficiency limit, and optimum design. J Cleaner Production, 2020, 242: 118444

    Article  Google Scholar 

  64. Liao T J, Chen Y, Yang Z M. Optimal performance of solar-driven thermo-electric-radiative coupled devices (in Chinese). Sci Sin Tech, 2021, 51: 46–54

    Article  Google Scholar 

  65. Lin B H, Liao T J. Thermoradiative-thermionic hybrid energy electron devices. IEEE Trans Electron Devices, 2020, 67: 1132–1135

    Article  Google Scholar 

  66. Liao T J, Du J Y, Guo J C, et al. Schottky junction-based thermophotovoltaic-thermionic devices. J Phys D-Appl Phys, 2020, 53: 055503

    Article  Google Scholar 

  67. Lin B H, Huang Z F. Optimization of irreversible capacitive thermoelectric conversion device performance (in Chinese). Sci Sin Tech, 2020, 50: 551–561

    Article  Google Scholar 

  68. Feng Y L, Chen L G, Meng F K, et al. Influences of external heat transfer and Thomson effect on the performance of TEG-TEC combined thermoelectric device. Sci China Tech Sci, 2018, 61: 1600–1610

    Article  Google Scholar 

  69. Chen L G, Meng F K, Ge Y L, et al. Performance optimization of a class of combined thermoelectric heating devices. Sci China Tech Sci, 2020, 63: 2640–2648

    Article  Google Scholar 

  70. Feng H J, Wu Z X, Chen L G, et al. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers Manage, 2020, 227: 113585

    Article  Google Scholar 

  71. Feng H J, Chen W J, Chen L G, et al. Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle. Energy Convers Manage, 2020, 220: 113079

    Article  Google Scholar 

  72. Wu Z X, Feng H J, Chen L G, et al. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers Manage, 2020, 210: 112727

    Article  Google Scholar 

  73. Meng Z W, Chen L G, Wu F. Optimal power and efficiency of multistage endoreversible quantum Carnot heat engine with harmonic oscillators at the classical limit. Entropy, 2020, 22: 457

    Article  Google Scholar 

  74. Chen L G, Liu X W, Ge Y L, et al. Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators. Physica A-Stat Mech its Appl, 2020, 550: 124140

    Article  Google Scholar 

  75. Chen L G, Liu X W, Wu F, et al. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators. Physica A-Statistical Mech its Appl, 2020, 537: 122597

    Article  Google Scholar 

  76. Liu X W, Chen L G, Wei S H, et al. Optimal ecological performance investigation of a quantum harmonic oscillator Brayton refrigerator. J Thermal Sci Eng Appl, 2020, 12: 011007

    Article  Google Scholar 

  77. Ding Z M, Chen L G, Ge Y L, et al. Optimal performance regions of an irreversible energy selective electron heat engine with double resonances. Sci China Tech Sci, 2019, 62: 397–405

    Article  Google Scholar 

  78. Chen L G, Tang C Q, Feng H J, et al. Power, efficiency, power density and ecological function optimization for an irreversible modified closed variable-temperature reservoir regenerative brayton cycle with one isothermal heating process. Energies, 2020, 13: 5133

    Article  Google Scholar 

  79. Ding Z M, Ge Y L, Chen L G, et al. Optimal performance regions of Feynman’s ratchet engine with different optimization criteria. J Non-Equilibrium ThermoDyn, 2020, 45: 191–207

    Article  Google Scholar 

  80. Qiu S S, Ding Z M, Chen L G. Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures. Energy Convers Manage, 2020, 225: 113360

    Article  Google Scholar 

  81. Liang S J, Ang L K. Electron thermionic emission from graphene and a thermionic energy converter. Phys Rev Appl, 2015, 3: 14002

    Article  Google Scholar 

  82. Ang Y S, Yang H Y, Ang L K. Universal scaling laws in Schottky heterostructures based on two-dimensional materials. Phys Rev Lett, 2018, 121: 056802

    Article  Google Scholar 

  83. Ang Y S, Chen Y, Tan C, et al. Generalized high-energy thermionic electron injection at graphene interface. Phys Rev Appl, 2019, 12: 014057

    Article  Google Scholar 

  84. Ang Y S, Ang L K. Current-temperature scaling for a Schottky interface with nonparabolic energy dispersion. Phys Rev Appl, 2016, 6: 034013

    Article  Google Scholar 

  85. Aoki M, Amawashi H. Dependence ofband structures on stacking and field in layered graphene. Solid State Commun, 2007, 142: 123–127

    Article  Google Scholar 

  86. Min H K, MacDonald A H. Electronic structure of multilayer graphene. Prog Theor Phys Suppl, 2008, 176: 227–252

    Article  MATH  Google Scholar 

  87. Filleter T, Emtsev K V, Seyller T, et al. Local work function measurements of epitaxial graphene. Appl Phys Lett, 2008, 93: 133117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51779262, 51576207, 51306206) and the Hubei Province Natural Science Foundation of China (Grant No. 2017CFB498). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript. The authors also wish to thank Dr. Feng Chao for his timely discussion on the energy dispersion of graphene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Ding, Z., Chen, L. et al. Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci. China Technol. Sci. 64, 1007–1016 (2021). https://doi.org/10.1007/s11431-020-1749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1749-9

Navigation