Skip to main content
Log in

Performance optimization of three-terminal energy selective electron generators

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The energy selective electron device works among electron reservoirs with different temperatures and chemical potentials. Electrons obey the Fermi-Dirac distribution, and with the help of resonant filters, a part of electrons with specific energy levels can tunnel among reservoirs and provide current to an external circuit. Herein, an irreversible three-terminal energy selective electron generator model is proposed. Using statistical mechanics and finite-time-thermodynamics, analytical expressions of power and efficiency are derived, and the optimal performance of the device is investigated. Results show that the central energy level difference of filters, the chemical potential difference of low-temperature reservoirs, the interval of mean-central-energy-level of filters and the mean-chemical-potential of low-temperature reservoirs can be optimized to maximize power and efficiency. On the basis of power and efficiency analyses, performance characteristics under different objective functions, including efficient power and ecological function, are discussed and the corresponding optimal performance regions are obtained. The relationship between the entropy generation rate and the efficiency is investigated, and it is shown that the minimum-entropy-generation-state does not coincide with the maximum-efficiency-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Humphrey T E, Newbury R, Taylor R P, et al. Reversible quantum Brownian heat engines for electrons. Phys Rev Lett, 2002, 89: 116801

    Article  Google Scholar 

  2. Su S H, Zhang Y C, Peng W L, et al. Thermodynamic characteristics and research progress of energy-conversion quantum systems (in Chinese). Sci Sin-Phys Mech Astron, 2021, 51: 030011

    Article  Google Scholar 

  3. Jordan A N, Sothmann B, Sánchez R, et al. Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys Rev B, 2013, 87: 075312

    Article  Google Scholar 

  4. Jiang J H. Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects. J Appl Phys, 2014, 116: 194303

    Article  Google Scholar 

  5. Valencia-Ortega G, Arias-Hernandez L A. Energetic optimization effects in single resonant tunneling GaAs-nanoconverters. Physica E, 2020, 124: 114231

    Article  Google Scholar 

  6. Edwards H L, Niu Q, Georgakis G A, et al. Cryogenic cooling using tunneling structures with sharp energy features. Phys Rev B, 1995, 52: 5714–5736

    Article  Google Scholar 

  7. Wang X M, He J Z, Tang W. Performance characteristics of an energy selective electron refrigerator with double resonances. Chin Phys B, 2009, 18: 984–991

    Article  Google Scholar 

  8. He J, Wang X, Liang H. Optimum performance analysis of an energy selective electron refrigerator affected by heat leaks. Phys Scr, 2009, 80: 035701

    Article  Google Scholar 

  9. Linke H, Humphrey T E, Taylor R P, et al. Quantum ratchets act as heat pumps. Physica B, 2002, 314: 464–468

    Article  Google Scholar 

  10. Peng W, Liao T, Zhang Y, et al. Parametric selection criteria of thermal electron-tunneling amplifiers operating at optimum states. Energy Convers Manage, 2017, 143: 391–398

    Article  Google Scholar 

  11. Pei J, Li L L, Liu D W, et al. Development of integrated two-stage thermoelectric generators for large temperature difference. Sci China Tech Sci, 2019, 62: 1596–1604

    Article  Google Scholar 

  12. Li J F, Pan Y, Wu C F, et al. Processing of advanced thermoelectric materials. Sci China Tech Sci, 2017, 60: 1347–1364

    Article  Google Scholar 

  13. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Article  Google Scholar 

  14. Datta S. Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press, 1995

    Book  Google Scholar 

  15. Du J, Fu T, Hu C, et al. Entropy analyses of electronic devices with different energy selective electron tunnels. Physica A-Statistical Mech its Appl, 2020, 560: 125128

    Article  MathSciNet  Google Scholar 

  16. Ding Z M, Chen L G, Ge Y L, et al. Optimal performance regions of an irreversible energy selective electron heat engine with double resonances. Sci China Tech Sci, 2019, 62: 397–405

    Article  Google Scholar 

  17. Su S, Guo J, Su G, et al. Performance optimum analysis and load matching of an energy selective electron heat engine. Energy, 2012, 44: 570–575

    Article  Google Scholar 

  18. Nakpathomkun N, Xu H Q, Linke H. Thermoelectric efficiency at maximum power in low-dimensional systems. Phys Rev B, 2010, 82: 235428

    Article  Google Scholar 

  19. Yang Y, Xu S, Li W, et al. Optimal performance of three-terminal nanowire heat engine based on one-dimensional ballistic conductors. Phys Scr, 2020, 95: 095001

    Article  Google Scholar 

  20. Qiu S, Ding Z, Chen L, et al. Optimal performance region of energy selective electron cooling devices consisting of three reservoirs. Eur Phys J Plus, 2019, 134: 273

    Article  Google Scholar 

  21. Peng W, Zhang Y, Yang Z, et al. Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations. Eur Phys J Plus, 2018, 133: 38

    Article  Google Scholar 

  22. Su G, Liao T, Chen L, et al. Performance evaluation and optimum design of a new-type electronic cooling device. Energy, 2016, 101: 421–426

    Article  Google Scholar 

  23. Su G, Pan Y, Zhang Y, et al. An electronic cooling device with multiple energy selective tunnels. Energy, 2016, 113: 723–727

    Article  Google Scholar 

  24. Peng W, Ye Z, Zhang X, et al. Performance improvement of a four-terminal thermal amplifier with multiple energy selective tunnels. Energy Convers Manage, 2018, 166: 74–80

    Article  Google Scholar 

  25. Li W, Yang Y, Fu J, et al. Thermodynamic performance and optimal analysis of a multi-level quantum dot thermal amplifier. ES Energy Environ, 2020, 7: 40–47

    Google Scholar 

  26. Shi Z C, Fu J, Qin W F, et al. Thermodynamic performance of three-terminal hybrid quantum dot thermoelectric devices. Chin Phys Lett, 2017, 34: 110501

    Article  Google Scholar 

  27. Lin Z, Yang Y Y, Li W, et al. Three-terminal refrigerator based on resonant-tunneling quantum wells. Phys Rev E, 2020, 101: 022117

    Article  Google Scholar 

  28. Jaliel G, Puddy R K, Sánchez R, et al. Experimental realization of a quantum dot energy harvester. Phys Rev Lett, 2019, 123: 117701

    Article  Google Scholar 

  29. Su H, Zhao Q Y, Wang J W, et al. A three-terminal quantum dot heat engine based on ideal resonant tunneling (in Chinese). Sci Sin Tech, 2016, 46: 1296–1302

    Article  Google Scholar 

  30. Andresen B. Current trends in finite-time thermodynamics. Angew Chem Int Ed, 2011, 50: 2690–2704

    Article  Google Scholar 

  31. Andresen B, Salamon P, Berry R S. Thermodynamics in finite time. Phys Today, 1984, 37: 62–70

    Article  Google Scholar 

  32. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79: 1191–1218

    Article  Google Scholar 

  33. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilibrium Thermodyn, 1999, 24: 327–359

    MATH  Google Scholar 

  34. Cheng X T, Xu X H, Liang X G. Theoretical analyses of the performance of a concentrating photovoltaic/thermal solar system with a mathematical and physical model, entropy generation minimization and entransy theory. Sci China Tech Sci, 2018, 61: 843–852

    Article  Google Scholar 

  35. Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am J Phys, 1975, 43: 22–24

    Article  Google Scholar 

  36. Ma Y H, Zhai R X, Chen J, et al. Experimental test of the 1/τ-scaling entropy generation in finite-time thermodynamics. Phys Rev Lett, 2020, 125: 210601

    Article  Google Scholar 

  37. Qiu S S, Ding Z M, Chen L G, et al. Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci China Tech Sci, 2021, 64: 1007–1016

    Article  Google Scholar 

  38. Zhang Y C, Guo J C, Chen J C. Thermoelectric performance of three-terminal quantum dot refrigerators in two configurations. Physica E, 2020, 118: 113874

    Article  Google Scholar 

  39. Wu Y Q. Analyses of thermodynamic performance for the endoreversible Otto cycle with the concepts of entropy generation and entransy. Sci China Tech Sci, 2017, 60: 692–700

    Google Scholar 

  40. Li G, Tu Z C. Retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential. Sci China-Phys Mech Astron, 2016, 59: 640501

    Article  Google Scholar 

  41. Ou C J, Huang Z F, Lin B H, et al. A three-process quantum engine cycle consisting of a two-level system. Sci China-Phys Mech Astron, 2014, 57: 1266–1273

    Article  Google Scholar 

  42. You J, Chen L G, Wu Z X, et al. Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci China Tech Sci, 2018, 61: 453–463

    Article  Google Scholar 

  43. Feng Y L, Chen L G, Meng F K, et al. Influences of external heat transfer and Thomson effect on the performance of TEG-TEC combined thermoelectric device. Sci China Tech Sci, 2018, 61: 1600–1610

    Article  Google Scholar 

  44. Chen L G, Meng F K, Ge Y L, et al. Performance optimization of a class of combined thermoelectric heating devices. Sci China Tech Sci, 2020, 63: 2640–2648

    Article  Google Scholar 

  45. Wu Z, Feng H, Chen L, et al. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers Manage, 2020, 210: 112727

    Article  Google Scholar 

  46. Tang C, Chen L, Feng H, et al. Four-objective optimizations for an improved irreversible closed modified simple brayton cycle. Entropy, 2021, 23: 282

    Article  MathSciNet  Google Scholar 

  47. Qi C, Ding Z, Chen L, et al. Modeling and performance optimization of an irreversible two-stage combined thermal Brownian heat engine. Entropy, 2021, 23: 419

    Article  Google Scholar 

  48. Wang R, Ge Y, Chen L, et al. Power and thermal efficiency optimization of an irreversible steady-flow lenoir cycle. Entropy, 2021, 23: 425

    Article  Google Scholar 

  49. Chen L, Meng F, Ge Y, et al. Performance optimization for a multielement thermoelectric refrigerator with linear phenomenological heat transfer law. J Non-Equilibrium Thermodyn, 2021, 46: 149–162

    Article  Google Scholar 

  50. Qi C, Ding Z, Chen L, et al. Modeling of irreversible two-stage combined thermal brownian refrigerators and their optimal performance. J Non-Equilibrium Thermodyn, 2021, 46: 175–189

    Article  Google Scholar 

  51. Yan Z J. η and P of a Carnot engine at maximum ηP (in Chinese). Nat Mag, 1984, 7: 475

    Google Scholar 

  52. Yan Z J. η and P of a Carnot engine at maximum ηλP (in Chinese). J Xiamen Univ (Nat Sci), 1986, 25: 279–286

    Google Scholar 

  53. Yan Z J. η and P of an endoreversible Carnot engine at maximum ηλP (in Chinese). J Eng Thermal Energy Power, 1989, 4: 1–6

    Google Scholar 

  54. Yilmaz T. A new performance criterion for heat engines: Efficient power. J Energy Institute, 2006, 79: 38–41

    Article  Google Scholar 

  55. Yilmaz T, Durmuşoğlu Y ı. Efficient power analysis for an irreversible Carnot heat engine. Int J Energy Res, 2008, 32: 623–628

    Article  Google Scholar 

  56. Singh V, Johal R S. Low-dissipation Carnot-like heat engines at maximum efficient power. Phys Rev E, 2018, 98: 062132

    Article  Google Scholar 

  57. Levario-Medina S, Valencia-Ortega G, Arias-Hernandez L A. Thermal optimization of Curzon-Ahlborn heat engines operating under some generalized efficient power regimes. Eur Phys J Plus, 2019, 134: 348

    Article  Google Scholar 

  58. Angulo-Brown F. An ecological optimization criterion for finite-time heat engines. J Appl Phys, 1991, 69: 7465–7469

    Article  Google Scholar 

  59. Yan Z. Comment on “An ecological optimization criterion for finite-time heat engines” [J. Appl. Phys. 69, 7465 (1991)]. J Appl Phys, 1993, 73: 3583

    Article  Google Scholar 

  60. Aragón-González G, Canales-Palma A, León-Galicia A, et al. Maximum power, ecological function and efficiency of an irreversible Carnot cycle: a cost and effectiveness optimization. Braz J Phys, 2008, 38: 543–550

    Article  Google Scholar 

  61. Wang H, Wu G. Ecological optimization for generalized irreversible macro/nano thermosize engine. J Appl Phys, 2013, 113: 054309

    Article  Google Scholar 

  62. Long R, Liu W. Ecological optimization for general heat engines. Physica A-Statistical Mech its Appl, 2015, 434: 232–239

    Article  Google Scholar 

  63. Long R, Liu W. Ecological optimization and coefficient of performance bounds of general refrigerators. Physica A-Statistical Mech its Appl, 2016, 443: 14–21

    Article  Google Scholar 

  64. Gonca G, Sahin B. Thermo-ecological performance analysis of a Joule-Brayton cycle (JBC) turbine with considerations of heat transfer losses and temperature-dependent specific heats. Energy Convers Manage, 2017, 138: 97–105

    Article  Google Scholar 

  65. Rojas-Gamboa D A, Rodríguez J I, Gonzalez-Ayala J, et al. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Phys Rev E, 2018, 98: 022130

    Article  Google Scholar 

  66. Sciubba E. Exergy-based ecological indicators: From thermo-economics to cumulative exergy consumption to thermo-ecological cost and extended exergy accounting. Energy, 2019, 168: 462–476

    Article  Google Scholar 

  67. Singh V, Johal R S. Three-level laser heat engine at optimal performance with ecological function. Phys Rev E, 2019, 100: 012138

    Article  Google Scholar 

  68. Gonzalez-Hernandez S. Unification of optimization criteria and energetic analysis of a thermoelectric cooler and heater. Physica A-Statistical Mech its Appl, 2020, 555: 124700

    Article  MathSciNet  Google Scholar 

  69. Feng H, Qin W, Chen L, et al. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers Manage, 2020, 205: 112424

    Article  Google Scholar 

  70. Shi S, Ge Y, Chen L, et al. Four-objective optimization of irreversible atkinson cycle based on NSGA-II. Entropy, 2020, 22: 1150

    Article  MathSciNet  Google Scholar 

  71. Chen L, Liu X, Wu F, et al. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators. Physica A-Statistical Mech its Appl, 2020, 537: 122597

    Article  Google Scholar 

  72. Chen L, Tang C, Feng H, et al. Power, efficiency, power density and ecological function optimization for an irreversible modified closed variable-temperature reservoir regenerative brayton cycle with one isothermal heating process. Energies, 2020, 13: 5133

    Article  Google Scholar 

  73. Liu X, Chen L, Ge Y, et al. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems. J Non-Equilibrium Thermodyn, 2021, 46: 61–76

    Article  Google Scholar 

  74. Ge Y, Chen L, Feng H. Ecological optimization of an irreversible Diesel cycle. Eur Phys J Plus, 2021, 136: 198

    Article  Google Scholar 

  75. Wu H, Ge Y, Chen L, et al. Power, efficiency, ecological function and ecological coefficient of performance optimizations of irreversible Diesel cycle based on finite piston speed. Energy, 2021, 216: 119235

    Article  Google Scholar 

  76. Ben-Asher A, Šimsa D, Uhlířová T, et al. Laser control of resonance tunneling via an exceptional point. Phys Rev Lett, 2020, 124: 253202

    Article  Google Scholar 

  77. Cheng X T, Wang W H, Liang X G. Optimization of heat transfer and heat-work conversion based on generalized heat transfer law. Sci China Tech Sci, 2012, 55: 2847–2855

    Article  Google Scholar 

  78. Wu J, Guo Z Y. An exploration for the macroscopic physical meaning of entropy. Sci China Tech Sci, 2010, 53: 1809–1816

    Article  MATH  Google Scholar 

  79. Sánchez-Salas N, López-Palacios L, Velasco S, et al. Optimization criteria, bounds, and efficiencies of heat engines. Phys Rev E, 2010, 82: 051101

    Article  Google Scholar 

  80. Wang Y, Li M, Tu Z C, et al. Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators. Phys Rev E, 2012, 86: 011127

    Article  Google Scholar 

  81. de Tomas C, Roco J M M, Hernández A C, et al. Low-dissipation heat devices: Unified trade-offoptimization and bounds. Phys Rev E, 2013, 87: 012105

    Article  Google Scholar 

  82. Long R, Liu W. Coefficient of performance and its bounds with the figure of merit for a general refrigerator. Phys Scr, 2015, 90: 025207

    Article  Google Scholar 

  83. Zhang Y, Huang C, Lin G, et al. Efficiency bounds of molecular motors under a trade-off figure of merit. Physica A-Statistical Mech its Appl, 2017, 474: 230–236

    Article  MathSciNet  MATH  Google Scholar 

  84. Lee J S, Park J M, Chun H M, et al. Exactly solvable two-terminal heat engine with asymmetric Onsager coefficients: Origin of the power-efficiency bound. Phys Rev E, 2020, 101: 052132

    Article  MathSciNet  Google Scholar 

  85. Whitney R S. Most efficient quantum thermoelectric at finite power output. Phys Rev Lett, 2014, 112: 130601

    Article  Google Scholar 

  86. Whitney R S. Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output. Phys Rev B, 2015, 91: 115425

    Article  Google Scholar 

  87. Luo R, Benenti G, Casati G, et al. Thermodynamic bound on heat-to-power conversion. Phys Rev Lett, 2018, 121: 080602

    Article  Google Scholar 

  88. Benenti G, Casati G, Wang J. Power-efficiency-fluctuations trade-off in steady-state heat engines: The role of interactions. Arxiv: 2007.08573 [cond-mat.stat-mech], 2020

  89. Chen S, Wang J, Casati G, et al. Thermoelectricity of interacting particles: A numerical approach. Phys Rev E, 2015, 92: 032139

    Article  Google Scholar 

  90. Reichl L E. A Modern Course in Statistical Physics. 3rd ed. Weinhein: Wiley-VCH, 2009

    MATH  Google Scholar 

  91. Esposito M, Lindenberg K, Van den Broeck C. Universality of efficiency at maximum power. Phys Rev Lett, 2009, 102: 130602

    Article  Google Scholar 

  92. Proesmans K, Cleuren B, Van den Broeck C. Power-efficiency-dissipation relations in linear thermodynamics. Phys Rev Lett, 2016, 116: 220601

    Article  MATH  Google Scholar 

  93. Lee J S, Lee S H, Um J, et al. Carnot efficiency and zero-entropy production rate do not guarantee reversibility of a process. J Korean Phys Soc, 2019, 75: 948–952

    Article  Google Scholar 

  94. Su S H, Shen W, Du J Y, et al. Thermodynamic coupling rule for quantum thermoelectric devices. J Phys D: Appl Phys, 2019, 53: 95502

    Article  Google Scholar 

  95. Ma Y H. Effect of finite-size heat source’s heat capacity on the efficiency of heat engine. Entropy, 2020, 22: 1002

    Article  MathSciNet  Google Scholar 

  96. Kittel C. Introduction to Solid State Physics. 8th ed. New York: Wiley, 2005

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51576207 and 51306206), and the Hubei Province Natural Science Foundation of China (Grant No. 2017CFB498). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Ding, Z., Chen, L. et al. Performance optimization of three-terminal energy selective electron generators. Sci. China Technol. Sci. 64, 1641–1652 (2021). https://doi.org/10.1007/s11431-020-1828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1828-5

Keywords

Navigation