Skip to main content
Log in

Research progress of the fractional Fourier transform in signal processing

  • Published:
Science in China Series F Aims and scope Submit manuscript

Abstract

The fractional Fourier transform is a generalization of the classical Fourier transform, which is introduced from the mathematic aspect by Namias at first and has many applications in optics quickly. Whereas its potential appears to have remained largely unknown to the signal processing community until 1990s. The fractional Fourier transform can be viewed as the chirp-basis expansion directly from its definition, but essentially it can be interpreted as a rotation in the time-frequency plane, i.e. the unified time-frequency transform. With the order from 0 increasing to 1, the fractional Fourier transform can show the characteristics of the signal changing from the time domain to the frequency domain. In this research paper, the fractional Fourier transform has been comprehensively and systematically treated from the signal processing point of view. Our aim is to provide a course from the definition to the applications of the fractional Fourier transform, especially as a reference and an introduction for researchers and interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Namias, V., The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Math. Appl., 1980, 25: 241–265.

    MATH  MathSciNet  Google Scholar 

  2. McBride, A. C., Kerr, F. H., On Namias’ fractional Fourier transform, IMA J. Appl. Math., 1987, 39: 159–175.

    MathSciNet  Google Scholar 

  3. Mendlovic, D., Ozaktas, H. M., Fractional Fourier transforms and their optical implementation (I), J. Opt. Sco. AM. A., 1993, 10(10): 1875–1881.

    Google Scholar 

  4. Ozaktas, H. M., Mendlovic, D., Fractional Fourier transforms and their optical implementation (II), J. Opt. Sco. AM. A., 1993, 10(12): 2522–2531.

    Google Scholar 

  5. Ozaktas, H. M., Kutay, M. A., Zalevsky, Z., The fractional Fourier Transform with Applications in Optics and Signal Processing, New York: John Wiley & Sons, 2000.

    Google Scholar 

  6. Tao, R., Qi, L., Wang, Y., Theory and Applications of the Fractional Fourier Transform (in Chinese), Beijing: Tsinghua University Press, 2004.

    Google Scholar 

  7. Sun, X. B., Bao, Z., Fractional Fourier transform and its applications, Acta Electronica Sinica (in Chinese), 1996, 24(12): 60–65.

    Google Scholar 

  8. Jiang, Z. P., Fourier transform of fractional order, Chinese Journal of Quantum Electronics (in Chinese), 1996, 13(4): 289–300.

    Google Scholar 

  9. Almeida, L. B., The fractional Fourier transform and time-frequency representations, IEEE Tran. Signal Processing, 1994, 42(11): 3084–3091.

    Google Scholar 

  10. Zayed, A. I., Garcia, A. G., New sampling formulae for the fractional Fourier transform, Signal Processing, 1999, 77: 111–114.

    Article  Google Scholar 

  11. Erseghe, T., Kraniauskas, P., Cariolaro, G., Unified fractional Fourier transform and sampling theorem, IEEE Tran. Signal Processing, 1999, 47(12): 3419–3423.

    MathSciNet  Google Scholar 

  12. Almeida, L. B., Product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters, 1997, 4(1): 15–17.

    MathSciNet  Google Scholar 

  13. Zayed, A. I., A convolution and product theorem for the fractional Fourier transform, IEEE Signal Processing Letters, 1998, 5(4): 101–103.

    Article  MathSciNet  Google Scholar 

  14. Lohmann, A. W., Relationships between the Radon-Wigner and fractional Fourier transfoms, J. Opt. Soc. Am. A, 1994, 11(6): 1398–1401.

    MathSciNet  Google Scholar 

  15. Ozaktas, H. M., Erkaya, N., Kutay, M. A., Effect of fractional Fourier transformation on Time-Frequency distributions belonging to the cohen class, IEEE Signal Processing Letters, 1996, 3(2): 40–41.

    Article  Google Scholar 

  16. Ran, Q. W., Shen, Y. Y., Liu, Y. T., The fractional Fourier transform and matrix group and the time-frequency analysis, Signal Processing (in Chinese), 2001, 17(2): 162–167, 129.

    Google Scholar 

  17. Ozaktas, H. M., Aytur, O., Fractional Fourier domains, Signal Processing, 1995, 46: 119–124.

    Article  Google Scholar 

  18. Shinde, S., Gadre, V. M., An uncertainty principle for real signals in the fractional Fourier transform domain, IEEE Tran. Signal Processing, 2001, 49(11): 2545–2548.

    MathSciNet  Google Scholar 

  19. Akay, O., Boudreaux-Bartels, G. F., Fractional convolution and correlation via operator methods and an application to detection of linear FM signals, IEEE Tran. Signal Processing, 2001, 49(5): 979–993.

    Google Scholar 

  20. Pei, S. C., Ding, J. J., Relations between fractional operations and time-frequency distributions, and their applications, IEEE Tran. Signal Processing, 2001, 49(8): 1638–1655.

    MathSciNet  Google Scholar 

  21. Akay, O., Boudreaux-Bartels, G. F., Unitary and hermitian fractional operators and their relation to the fractional Fourier transform, IEEE Signal Processing Letters, 1998, 5(12): 312–314.

    Article  Google Scholar 

  22. Lohmann, A. W., Mendlovic, D., Zalevsky, Z., Fractional Hilbert transform, Opt. Lett., 1996, 21: 281–283.

    Google Scholar 

  23. Pei, S. C., Yeh, M. H., Discrete fractional Hilbert transform, IEEE Tran. Circuits and Systems-II, 2000, 47(11): 1307–1311.

    Google Scholar 

  24. Tseng, C. C., Pei, S. C., Design and application of discrete-time fractional Hilbert transformer, IEEE Tran. Circuits and Systems-II, 2000, 47(12): 1529–1533.

    Google Scholar 

  25. Pei, S. C., Ding, J. J., Fractional cosine, sine, and Hartley transforms, IEEE Tran. Signal Processing, 2002, 50(7): 1661–1680.

    MathSciNet  Google Scholar 

  26. Wang, K. Z., Wan, S. R., Variable angle fractional Fourier transform and its application in modeling the signal’s time-frequency structure, Journal of Southeast University (Natural Science Edition) (in Chinese), 2001, 31(4): 27–30.

    MathSciNet  Google Scholar 

  27. Chen, Z., Wang, H. Y., Qiu, T. S., The study of ambiguity function based on fractional Fourier transform, Signal Processing (in Chinese), 2003, 19(6): 499–502.

    Google Scholar 

  28. Alieva, T., Bastiaans, M. J., On fractional Fourier transform moments, IEEE Signal Processing Letters, 2000, 7(11): 320–323.

    Article  Google Scholar 

  29. Stankovic, L., Alieva, T., Bastiaans, M. J., Time-frequency signal analysis based on the windowed fractional Fourier transform, Signal Processing, 2003, 83: 2459–2468.

    Google Scholar 

  30. Stankovic, L., A method for time-frequency analysis, IEEE Tran. Signal Processing, 1994, 42(1): 225–229.

    Google Scholar 

  31. Zhang, F., Bi, G. A., Chen, Y. Q., Tomography time-frequency transform, IEEE Tran. Signal Processing, 2002, 50(6): 1289–1297.

    MathSciNet  Google Scholar 

  32. Chen, G. H., Ma, S. W., Cao, J. L. et al., Adaptive time-frequency representation based on fractinal Fourier transform, Systems Engineering and Electronics (in Chinese), 2001, 23(4): 69–71.

    Google Scholar 

  33. Xia, X. G., Owechko, Y., Soffer, B. H. et al., On generalized-marginal time-frequency distributions, IEEE Tran. Signal Processing, 1996, 44(11): 2882–2886.

    Google Scholar 

  34. Zhang, W. Q., Tao, R., Sampling theorems for bandpass signals with fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2005, 33(7): 1196–1199.

    Google Scholar 

  35. Pei, S. C., Yeh, M. H., Tseng, C. C., Discrete fractional Fourier transform based on orthogonal projections, IEEE Tran. Signal Processing, 1999, 47(5): 1335–1348.

    MathSciNet  Google Scholar 

  36. Candan, C., Kutay, M. A., Ozaktas, H. M., The discrete fractional Fourier transform, IEEE Tran. Signal Processing, 2000, 48(5): 1329–1337.

    MathSciNet  Google Scholar 

  37. Ping, X. J., Tao, R., Zhou, S. Y. et al., A novel fast algorithm for fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2001, 29(3): 406–408.

    Google Scholar 

  38. Ozaktas, H. M., Arikan, O., Kufay, M. A. et al., Digital computation of the fractional Fourier transform, IEEE Tran. Signal Processing, 1996, 44(9): 2141–2150.

    Google Scholar 

  39. Bultheel, A., Sulbaran, H. E. M., Computation of the fractional Fourier transform, Applied and Computational Harmonic Analysis, 2004, 16: 182–202.

    Article  MathSciNet  Google Scholar 

  40. Soo-Chang Pei, Jian-Jiun Ding. Closed-form discrete fractional and affine Fourier transforms. IEEE Tran. Signal Processing, 2000, 48(5): 1338–1353.

    Google Scholar 

  41. Santhanam, B., McClellan, J. H., The discrete rotational Fourier transform, IEEE Tran. Signal Processing, 1996, 44(4): 994–998.

    Google Scholar 

  42. Yeh, M. H., Pei, S. C., A method for the discrete fractional Fourier transform computation, IEEE Tran. Signal Processing, 2003, 51(3): 889–891.

    MathSciNet  Google Scholar 

  43. Pei, S. C., Yeh, M. H., Two dimensional discrete fractional Fourier transform, Signal Processing, 1998, 67: 99–108.

    Article  Google Scholar 

  44. Qi, L., Tao, R., Zhou, S. Y. et al., Detection and paramter estimation of multicomponent LFM signal based on the fractional Fourier transform, Science in China, Ser. F, 2004, 47(2): 184–198.

    MathSciNet  Google Scholar 

  45. Alieva, T., Bastiaans, M. J., Stankovic, L., Signal reconstruction from two close fractional Fourier power spectra, IEEE Tran. Signal Processing, 2003, 51(1): 112–123.

    MathSciNet  Google Scholar 

  46. Ertosun, M.G., Atli, H., Ozaktas, H. M. et al., Complex signal recovery from two fractional Fourier transform intensities-order and noise dependence, Optics Communications, 2005, 244(1–6): 61–70.

    Google Scholar 

  47. Deng, B., Tao, R., Qi, L. et al., Fractional Fourier transform and time-frequency filtering, Systems Engineering and Electronics (in Chinese), 2004, 26(10): 1357–1359, 1405.

    Google Scholar 

  48. Erden, M. F., Kutay, M. A., Ozaktas, H. M., Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration, IEEE Tran. Signal Processing, 1999, 47(5): 1458–1462.

    Google Scholar 

  49. Kutay, M. A., Ozaktas, H. M., Arikan, O. et al., Optimal filtering in fractional Fourier domains, IEEE Tran. Signal Processing, 1997, 45(5): 1129–1143.

    Google Scholar 

  50. Qi, L., Tao, R., Zhou, S. Y. et al., An approach for optimal filtering of LFM signal, Acta Electronica Sinica (in Chinese), 2004, 32(9): 1464–1467.

    Google Scholar 

  51. Yetik, I. S., Nehorai, A., Beamforming using the fractional Fourier transform, IEEE Tran. Signal Processing, 2003, 51(6): 1663–1668.

    MathSciNet  Google Scholar 

  52. Shin, S. G., Jin, S., Shin, S. Y. et al., Optical neural network using fractional Fourier transform, log-likelihood, and parallelism, Optics Communications, 1998, 153: 218–222.

    Article  Google Scholar 

  53. Barshan, B., Ayrulu, B., Fractional Fourier transform pre-processing for neural networks and its applications to object recognition, Neural Networks, 2002, 15: 131–140.

    Article  Google Scholar 

  54. Sarikaya, R., Gao, Y. Q., Saon, G., Fractional Fourier transform features for speech recognition, in: ICASSP ’04. Proceedings, vol.1. NJ, USA: IEEE, 2004, 529–532.

    Google Scholar 

  55. Ainsleigh, P. L., Kehtarnavaz, N., Characterization of transient wandering tones by dynamic modeling of fractional Fourier features, in: ICASSP ’00. Proceedings, vol.2. NJ, USA: IEEE, 2000, 665–668.

    Google Scholar 

  56. Djurovic, I., Stankovic, S., Pitas, I., Digital watermarking in the fractional Fourier transformation domain, Journal of Network and Computer Applications, 2001, 24: 167–173.

    Article  Google Scholar 

  57. Hennelly, B., Sheridan, J. T., Fractional Fourier transform-based image encryption: phase retrieval algorithm, Optics Communications, 2003, 226: 61–80.

    Article  Google Scholar 

  58. Tao, R., Zhou, Y. S., A novel method for DOA estimation of wide-band LFM sources based on fractional Fourier transform, Journal of Beijing Institute of Technology (in Chinese), 2005, 25(10): 895–899.

    Google Scholar 

  59. Jang, S., Choi, W., Sarkar, T. K. et al., Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns, IEEE Tran. Antennas and Propagation, 2004, 52(11): 3109–3121.

    Google Scholar 

  60. Jouny, I. I., Radar backscatter analysis using fractional Fourier transform, in: IEEE Antennas and Propagation Society Symposium, NJ, USA: IEEE, 2004, 2115–2119.

    Google Scholar 

  61. Dong, Y. Q., Tao, R., Zhou, S. Y. et al., Sar moving target detection and imaging based on fractional Fourier transform, Acta Armamentarii (in Chinese), 1999, 20(2): 132–136.

    Google Scholar 

  62. Sun, H. B., Liu, G. S., Gu, H. et al., Application of the fractional Fourier transform to moving target detection in airborne SAR, IEEE Tran. Aerospace and Electronic Systems, 2002, 38(4): 1416–1424.

    Google Scholar 

  63. Zhao, X. H., Tao, R., A new MTD algorithm for passive radar based on fractional correlation, Acta Electronica Sinica (in Chinese), 2005, 33(9): 1567–1570.

    Google Scholar 

  64. Zhao, Y., Cai, P., Zhou, M. D., Digital computation of fractional Fourier transform, Journal of Harbin Engineering University (in Chinese), 2002, 23(6): 1–3.

    Google Scholar 

  65. Musha, T., Uchida, H., Nagashima, M., Self-monitoring sonar transducer array with internal accelerometers, IEEE Journal of Oceanic Engineering, 2002, 27(1): 28–34.

    Article  Google Scholar 

  66. Qi, L., Tao, R., Zhou, S. Y. et al., Frequency sweeping interference suppressing in DSSS system using fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2004, 32(5): 799–802.

    Google Scholar 

  67. Chen, E. Q., Tao, R., Zhang, W. Q., A method for time-varying channel parameter estimation based on fractional Fourier transform, Acta Electronica Sinica (in Chinese), 2005, 33(12).

  68. Martone, M., A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels, IEEE Tran. Communications, 2001, 49(6): 1011–1020.

    MATH  Google Scholar 

  69. Ju, Y., Barkat, B., Attallah, S., Analysis of peak-to-average power ratio of a multicarrier system based on the fractional Fourier transform, in: 2004 9th IEEE Singapore International Conference on Communication Systems, New York: IEEE, 2004, 165–168.

    Google Scholar 

  70. Huang, D. F., Chen, B. S., A multi-input-multi-output system approach for the computation of discrete fractional Fourier transform, Signal Processing, 2000, 80: 1501–1513.

    Google Scholar 

  71. Moshinsky, M., Quesne, C., Linear canonical transformations and their unitary representations, J. Math. Phys., 1971, 12(8): 1772–1780.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, R., Deng, B. & Wang, Y. Research progress of the fractional Fourier transform in signal processing. SCI CHINA SER F 49, 1–25 (2006). https://doi.org/10.1007/s11432-005-0240-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-005-0240-y

Keywords

Navigation