Skip to main content
Log in

Advances in automation and control research in China

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Automation is the utilization of control techniques together with other information technology to control industrial processes, reducing the need for human intervention. It plays a highly important role in social and economy as well as in daily life. Control theory is the theory of automation, and is an interdisciplinary branch of engineering and mathematics, examining the behavior of dynamical systems. China has a long history of manufacturing automatic devices. In recent years, some rapid progresses in control theory have been made in China. Many new theories and new methodologies have been developed to meet the increasing demands in industry, agriculture, defense, and other social sectors. Contemporary sciences such as complexity, systems biology, quantum technologies, have also found their close links to control theories and technologies. On the other hand, control theory itself has many unsolved fundamental problems requiring further studies and investigation. This paper is to review the development and progress that have been made in all these aspects in China. Some remarks on the future development of control theory are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H F, Cheng D. Early developments of control theory in China. Eur J Control, 2007, 13(1): 25–29

    Article  MATH  MathSciNet  Google Scholar 

  2. Wiener N. Cybernetics, or the Control and Communication in the Animal and the Machine. Cambridge: MIT Press, 1948

    Google Scholar 

  3. Maxwell J C. On governors. Proc Royal Society of London, 1868, 16: 270–283

    Article  Google Scholar 

  4. Tsien H S. Engineering Cybernetics. New York: McGraw-Hill, 1954

    Google Scholar 

  5. Guo L, Huang L, Jin Y. Some recent advances of automatic control in China. In: Proc of 14th IFAC World Congress, Beijing, 1999. 31–48

  6. Cheng D. Control theory. In: 2007–2008 Report on Advances in Control Science and Engineering (in Chinese)(ed. Chinese Association of Science and Technology). Beijing: Chinese Sci. Tech. Press, 2008. 31–40

    Google Scholar 

  7. Tian Y. Stability analysisi and design of the second-order congestion control for networkswith heterogeneous delays. IEEE/ACM Trans Netw, 2005, 13(5): 1082–1093

    Article  Google Scholar 

  8. Zhao J, Hill D. Dissipativity theory for switched systems. IEEE Trans Automat Contr, 2008, 53(5): 574–578

    MathSciNet  Google Scholar 

  9. Fang H, Ye H, Zhong M. Fault diagnosis of networked control systems. Annu Rev Contr, 2007, 31(1): 55–68

    Article  Google Scholar 

  10. Liu G, Xia Y, Rees D, et al. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Trans Syst Man Cy C, 2007, 37(2): 173–184

    Article  Google Scholar 

  11. Yue D, Hun Q, Chen P. State feedback controller design of networked control systems. IEEE Trans Circ Syst Vid, 2004, 51(11): 640–644

    Article  Google Scholar 

  12. Hu S, Zhu Q. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 2003, 39: 1877–1884

    Article  MATH  MathSciNet  Google Scholar 

  13. Zheng Y, Fang H, Wang H. Takagi-Sugeno fuzzy-model-based fault detection for netwroked control systems with Markov delays. IEEE Trans Syst Man Cy B, 2006, 36(4): 924–929

    Article  Google Scholar 

  14. Wu Y, Hu D, Hu X, et al. Observability analysis of rotation estimation by fusing inertial and line-based visual information: A revisit. Automatica, 2006, 42(10): 1809–1812

    Article  MATH  Google Scholar 

  15. Zhu X, Dong G, Hu D. Unified nonsingular tracking and stabilization controller design for unicycle type wheeled monile robots. Adv Robotics, 2007, 21(5): 711–728

    Article  Google Scholar 

  16. Ma X, Li X, Qiao H. Fuzzy neural network-based real-time selfreaction of mobile robot in unknown environments. Mechatronics, 2001, 11(8): 1037–1052

    Article  Google Scholar 

  17. Wu Y, Hu X, Hu D, et al. Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Trans Aero Elec Syst, 2005, 41(1): 110–132

    Article  MathSciNet  Google Scholar 

  18. Ning X, Fang J. An automonous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion. Aerospace Sci Tech, 2007, 11(3): 222–228

    Article  Google Scholar 

  19. Ali J, Fang J. SINS/ANS integration for augmented prerformance navigation solution using unscented Kalman filtering. Aerospace Sci Tech, 2006, 10(3): 233–238

    Article  Google Scholar 

  20. Yang Y, Shi Z, Guan Z, et al. Application of geomagnetic field in naviggation and localization system (in Chinese). J Chin Inert Tech, 2007, 15(6): 686–692

    Google Scholar 

  21. Xu Z, Kei Y, Ning S, et al. Situation and development of marine gravity aided navigation system (in Chinese). Prog Geoph, 2007, 22(1): 104–111

    Google Scholar 

  22. Yie X, Yuan J. H sub-optimal filter for low-cost integrated navigation system. Chinese J Aeronau, 2004, 17(4): 360–368

    Google Scholar 

  23. Song J. Model reference variable structure autopilot design for homing missile systems. J Beijing Inst Tech, 2001, 10(4): 364–369

    Google Scholar 

  24. Yao Y, Yang B, He F, et al. Attitude control of missile via Fliess expansion. IEEE Trans Contr Syst Tech, 2008, 16(5): 959–970

    Article  Google Scholar 

  25. Wu H, Hu J, Xie Y. Characteristic model-based all-coefficients and adaptive control method and its applications. IEEE Trans Syst Man Cy, 2007, 37: 213–221

    Article  Google Scholar 

  26. Su H, Zhang Q. Comuter integrated process systems and their applications. In: Report on Advances in Control Science and Engineering (in Chinese) (ed. Chinese Association of Science and Technology). Beijing: Chinese Sci. Tech. Press, 2008. 41–50

    Google Scholar 

  27. Zhao Q, Sun K, Zheng D, et al. A study of system splitting strategies for island operation of power systems: A towphase method based on OBDDs. IEEE Trans Power Syst, 2005, 18(4): 1556–1565

    Article  Google Scholar 

  28. Cheng D, Astolfi A, Ortega R. On feedback equivalence to port controlled Hamiltonian systems. Syst Contr Lett, 2005, 54(9): 911–917

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang Y, Feng G, Cheng D, et al. Adaptive L 2 disturbance attenuation control of multi-machine power systems with SMES units. Automatica, 2006, 42(7): 1121–1132

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang Y, Feng G, Cheng D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica, 2007, 43(3): 403–415

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang Y, Li S. Networked model predictive control based on neighborhood optimization for serially connected large-scale processes. J Process Contr, 2007, 27(1): 37–50

    Article  Google Scholar 

  32. Li S, Liu H. A new coordinated control strategy for boilerturbine system of coal-fired power plant. IEEE Trans Contr Syst Tech, 2005, 13(6): 943–954

    Article  Google Scholar 

  33. Ying S, Chen Z, Yuan Z. New chaotic PSO-based neural network predictive control for nonlinear process. IEEE Trans Neural Netw, 2007, 18(2): 595–600

    Article  Google Scholar 

  34. Xu X, Hu D, Lu X. Kernel-based least-squares policy iteration for reinforcement learning. IEEE Trans Neural Netw, 2007, 18(4): 973–992

    Article  Google Scholar 

  35. Mao J, Zhang J, Yue Y, et al. Adaptive-tree-structure-based Fuzzy inference system. IEEE Trans Fuzzy Syst, 2005, 13(1): 1–12

    Article  Google Scholar 

  36. Han J. Active Disturbance Rejection Control Technique—the Technique for Estimating and Compensating the Uncertainties (in Chinese). Beijing: National Defense Industry Press, 2008

    Google Scholar 

  37. Huang Y, Han J. A new synthesis method for uncertain systems-the self-stable region approach. Int J Syst Contr, 1999, 30(1): 33–38

    MATH  Google Scholar 

  38. Wu M, He Y, She J, et al. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, 40(8): 1435–1439

    Article  MATH  MathSciNet  Google Scholar 

  39. Jia Y. Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion. IEEE Trans Contr Syst Tech, 2000, 8(3): 554–569

    Article  Google Scholar 

  40. Jia Y. Alternative proofs for improved LMI Representations for the analysis and the design of continuous-tiem systems with polytopic type uncertainty: A predictive approach. IEEE Trans Automat Contr, 2003, 48(8): 1413–1416

    Article  Google Scholar 

  41. Wu Y Q, Yu X H, Feng C B. Variable structure control for MRAC system with perturbations in input and output channels. Sci China Ser E-Tech Sci, 2000, 43(4): 430–448

    Article  MATH  MathSciNet  Google Scholar 

  42. Hong Y, Jiang Z. Finite-time stabilization of nonlinear systems with dynamic and parametric uncertainties. IEEE Trans Automat Contr, 2006, 51(12): 1950–1956

    Article  MathSciNet  Google Scholar 

  43. Hong S, Wang L, Chu T. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D, 2006, 213(1): 51–65

    Article  MATH  MathSciNet  Google Scholar 

  44. Hong Y, Gao L, Cheng D, et al. Lyapunov-based approach of multi-agent systems with switching jointly connected interconnection. IEEE Trans Automat Contr, 2007, 52(5): 943–948

    Article  MathSciNet  Google Scholar 

  45. Chu T, Wang L, Chen T, et al. Self-organized motion in a class of anisotropic swarms: convergence vs oscillation. Chaos Soliton Fract, 2006, 30(4): 875–885

    Article  MATH  MathSciNet  Google Scholar 

  46. Cheng D, Wang J, Hu X. An extension of LaSalle’s invariance principle and its application to multi-agent consensus. IEEE Trans Automat Contr, 2008, 53(7): 1765–1770

    Article  MathSciNet  Google Scholar 

  47. Tang G, Guo L. Convergence of a class of multi-agent systems in probabilistic framework. J Syst Sci Comp, 2007, 20(2): 173–197

    Article  MATH  MathSciNet  Google Scholar 

  48. Han J, Li M, Guo L. Soft control on collective behavior of a group of autonomous agents by a shill agent. J Syst Sci Comp, 2006, 19: 54–62

    Article  MathSciNet  Google Scholar 

  49. Cheng D, Guo L, Huang J. On quadratic Lyapunov function. IEEE Trans Automat Contr, 2003, 48(5): 885–890

    Article  MathSciNet  Google Scholar 

  50. Sun Z, Ge S S, Lee T H. Reachability and controllability criteria for switched linear systems. Automatica, 2002, 38(5): 775–786

    Article  MATH  MathSciNet  Google Scholar 

  51. Cheng D. Controllability of switched bilinear systems. IEEE Trans Automat Contr, 2005, 50(4): 511–515

    Article  Google Scholar 

  52. Cheng D. Stabilization of planar switching systems. Syst Contr Lett, 2004, 51(2): 79–88

    Article  MATH  Google Scholar 

  53. Meng B, Zhang J. Reachability conditions for switched linear singular systems. IEEE Trans Automat Contr, 2006, 51(3): 482–488

    Article  MathSciNet  Google Scholar 

  54. Tan S, Zhang J, Yao L. Optimality analysis of adaptive sampled control of hybrid systems with quadratic index. IEEE Trans Automat Contr, 2005, 50(7): 1044–1051

    Article  MathSciNet  Google Scholar 

  55. Wang J, Cheng D, Hu X. Consensus of multi-agent linear dynamic systems. Asian J Contr, 2008, 10(2): 144–155

    Article  MathSciNet  Google Scholar 

  56. Kitano H. Foundations of Systems Biology. Cambridge: MIT Press, 2001

    Google Scholar 

  57. Zhang X. Bioinformatics. In: Report on Advances in Control Science and Engineering (ed. Chinese Association of Science and Technology). Beijing: Chinese Sci. Tech. Pub., 2008. 145–153

    Google Scholar 

  58. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  59. Cheng D, Qi H. Controllability and observability of Boolean control networks. Automatica, 2009, 45(7): 1659–1667

    Article  MathSciNet  Google Scholar 

  60. Tarn T J, Huang G, Clark J W. Modelling of quantum mechanical contol systems. J Math Model, 1980, 1: 109–121

    Article  MATH  MathSciNet  Google Scholar 

  61. Xi Z, Jin G. Performance comparison between classical and quantum control for a simple quantum system. Physica A, 2008, 387(4): 1056–1062

    Article  Google Scholar 

  62. Cui W, Xi Z, Pan Y. Optimal decoherence control in non-Markovian open dissipative quantum systems. Phys Rev A, 2008, 77(3): 032117

    Article  Google Scholar 

  63. Cui W, Xi Z, Pan Y. The entanglement dynamics of bipartite quantum system: towards entanglement sudden death. J Phys A: Math Theor, 2009, 42: 025303

    Article  MathSciNet  Google Scholar 

  64. Qi B, Guo L. Comparisons between quantum open-loop control and closed-loop control. In: Proc 27th Chinese Contr Conf, Kunming, 2008, 7: 393–397

    Google Scholar 

  65. Xi Z, Jin G. Classical and quantum control of a simple quantum system. Int J Quantum Inf, 2008, 5(6): 857–884

    Article  Google Scholar 

  66. Xie L, Guo L. How much uncertainty can be dealt with by feedback. IEEE Trans Automat Contr, 2000, 45(12): 2203–2217

    Article  MATH  MathSciNet  Google Scholar 

  67. Zhang Y, Guo L. A limit to the capability of feedback. IEEE Trans Automat Contr, 2002, 47(4): 687–692

    Article  MathSciNet  Google Scholar 

  68. Guo L. Exploring the maximum capability of adaptive feedback. Int J Adapt Contr Signal Proc, 2002, 16: 341–354

    Article  MATH  Google Scholar 

  69. Duan Z, Wang J, Huang L. Input and output coupled nonlinear systems. IEEE Trans Circ Syst, 2005, 52(3): 567–575

    Article  MathSciNet  Google Scholar 

  70. Wang J, Duan Z, Huang L. Control of a class of perdulumlike system with Lagrange stability. Automatica, 2006, 41: 145–150

    MATH  MathSciNet  Google Scholar 

  71. Yang X, Li Q. Chaos generator via wire-bridge oscillator. Electr Lett, 2002, 38: 623–625

    Article  Google Scholar 

  72. Guan X, Feng G, Chen C. A stabilization method of chaotic systems based on full delayed feedback controller design. Phys Lett A, 2006, 348: 210–221

    Article  Google Scholar 

  73. Lu J, Yu S, Leung H, et al. Experimental verification of multidirectional multi-scroll chaotic attractors. IEEE Trans Circ Syst, 2006, 53(1): 148–165

    Google Scholar 

  74. Chen H F. Strong consistency of recursive identification for Hammerstein systems with piecewise-linear memoryless block. IEEE Trans Automa Contr, 2005, 50(10): 1612–1617

    Article  Google Scholar 

  75. Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans Automat Contr, 2006, 51(3): 390–400

    Article  Google Scholar 

  76. Chen H F, Cao X, Fang H, et al. Nonlinear adaptive blind whitening for MIMO channels. IEEE Trans Signal Proc, 2005, 53(8): 2635–2647

    Article  MathSciNet  Google Scholar 

  77. Wang L, Yin G, Zhang J. Joint identification of plant rational models and noise distribution functions using binary-valued observations. Automatica, 2006, 42(4): 535–547

    Article  MATH  MathSciNet  Google Scholar 

  78. Zhou T, Feng C. Uniform sample generations from contractive block Toeplitz matrices. IEEE Trans Automat Contr, 2006, 52(9): 1559–1565

    Article  MathSciNet  Google Scholar 

  79. Zhou T. Frequency response estimation for NCFs of an MIMO plant from closed-loop time-domain experimental data. IEEE Trans Automat Contr, 2006, 51(1): 38–51

    Article  Google Scholar 

  80. Zhou T. Estimation of 1/f signals on the basis of curve fitting. IEEE Trans Signal Proc, 2000, 48(3): 617–628

    Article  Google Scholar 

  81. Sun Z, Ge S S, Huo W, et al. Stabilization of nonholonomic chained systems via nonregular feedback linearization. Syst Contr Lett, 2001, 44(4): 279–289

    Article  MATH  MathSciNet  Google Scholar 

  82. Cheng D, Hu X, Wang Y. Non-regular feedback linearization of nonlinear systems via a normal form algorithm. Automatica, 2004, 40(3): 439–447

    Article  MATH  MathSciNet  Google Scholar 

  83. Sun Y, Guo L. On controllability of some classes of affine nonlinear systems. In: Glas T, Hendeby G, eds. Forever Ljung in System Identification, Lund, Sweden: Studentlitteratur, 2006. 127–146

    Google Scholar 

  84. Cheng D, Martin C. Stabilization of nonlinear systems via designed center manifold. IEEE Trans Automat Contr, 2001, 46(9): 1372–1383

    Article  MATH  MathSciNet  Google Scholar 

  85. Yao P. On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J Control Optim, 1999, 37(5): 1568–1599

    Article  MATH  MathSciNet  Google Scholar 

  86. Yao P. Observability inequalities for shallow shells. SIAM J Control Optim, 2000, 38(6): 1729–1756

    Article  MATH  MathSciNet  Google Scholar 

  87. Zhang X, Zuazua E. Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system. J Diff Eqn, 2004, 204: 380–438

    Article  MATH  MathSciNet  Google Scholar 

  88. Guo B, Zhang X. The regularity of the wave equation with partial Dirichlet control and collocated observation. SIAM J Contr Opt, 2005, 44(5): 1598–1613

    Article  MathSciNet  Google Scholar 

  89. Guo B, Wang J. Riesz basis generation of an abstract secondorder partial differential equation system with general nonseparaed boundary conditions. Numer Func Anal Opt, 2006, 24(3): 291–328

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaiZhan Cheng.

Additional information

Supported partly by the National Natural Science Foundation of China (Grant Nos. 60674022, 60736022, 60821091)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, D. Advances in automation and control research in China. Sci. China Ser. F-Inf. Sci. 52, 1954–1963 (2009). https://doi.org/10.1007/s11432-009-0198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0198-2

Keyword

Navigation