Skip to main content
Log in

Potential key technologies for 6G mobile communications

  • Position Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The standard development of 5G wireless communication culminated between 2017 and 2019, followed by the worldwide deployment of 5G networks, which is expected to result in very high data rate for enhanced mobile broadband, support ultrareliable and low-latency services and accommodate massive number of connections. Research attention is shifting to future generation of wireless communications, for instance, beyond 5G or 6G. Unlike previous studies, which discussed the use cases, deployment scenarios, or new network architectures of 6G in depth, this paper focuses on a few potential technologies for 6G wireless communications, all of which represent certain fundamental breakthrough at the physical layer — technical hardcore of any new generation of wireless communications. Some of them, such as holographic radio, terahertz communication, large intelligent surface, and orbital angular momentum, are of revolutionary nature and many related studies are still at their scientific exploration stage. Several technical areas, such as advanced channel coding/modulation, visible light communication, and advanced duplex, while having been studied, may find more opportunities in 6G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao X, Yang P, Alzenad M, et al. Airborne communication network: a survey. IEEE J Sel Areas Commun, 2018, 36: 1907–1926

    Article  Google Scholar 

  2. International Telecommunications Union (ITU). Focus group on technologies for Network 2030. 2019. https://www.itu.int/en/IUT-T/focusgroups/net2030/

  3. Pouttu A. 6Genesis-taking the first steps towards 6G. In: Proceedings of IEEE Conference Standards Communications and Networking, 2018

  4. Rosenworcel. Talks up to 6G. 2018. https://www.multichannel.com/news/fccs-rosenworcel-talks-up-6g

  5. Miao W. We are studying 6G. 2018. http://www.srrc.org.cn/article20461.aspx

  6. Zhao Y J, Yu G H, Xu H Q. 6G mobile communication network: vision, challenges and key technologies (in Chinese). Sci Sin Inform, 2019, 49: 963–987

    Article  Google Scholar 

  7. Zong B Q, Chen F, Wang X Y, et al. 6G technologies. IEEE Veh Tech Mag, 2019, 14: 18–27

    Article  Google Scholar 

  8. Strinati E C, Barbarossa S, Gonzalez-Jimenez J L, et al. 6G: the next frontier. 2019. ArXiv: 1901.03239

  9. Saad W, Bennis M, Chen M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. 2019. ArXiv: 1902.10265

  10. David K, Berndt H. 6G vision and requirements: is there any need for beyond 5G? IEEE Veh Technol Mag, 2018, 13: 72–80

    Article  Google Scholar 

  11. Zong B, Zhao X, Wang J, et al. Photonics defined radio: a new paradigm for future mobile communication of B5G/6G. In: Proceedings of the 6th International Conference Photonics, Optics and Laser Technology, 2018

  12. Matti L, Kari L. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. White paper, 6G Flagship. Oulu: University of Oulu, 2019. http://jultika.oulu.fi/Record/isbn978-952-62-2354-4

    Google Scholar 

  13. Goodman J W. Introduction to Fourier Optics. New York: McGraw Hill, 1968

    Google Scholar 

  14. Konkol M R, Ross D D, Shi S, et al. High-power photodiode-integrated-connected arrary antenna. J Lightw Technol, 2017. 35: 2010–2016

    Article  Google Scholar 

  15. Murata H, Kohmu N, Wijayanto Y N, et al. Integration of patch antenna on optical modulators. IEEE Photonic Soc Newslett, 2014, 28: 4–7

    Google Scholar 

  16. Xu B, Qi W, Zhao Y, et al. Holographic radio interferometry for target tracking in dense multipath indoor environments. In: Proceedings of 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, 2017. 1–6

  17. Haug F J, Bräuninger M, Ballif C. Fourier light scattering model for treating textures deeper than the wavelength. Opt Express, 2017, 25: 14

    Article  Google Scholar 

  18. Barber Z W, Harrington C, Mohan R K, et al. Spatial-spectral holographic real-time correlative optical processor with >100 Gbps throughput. Appl Opt, 2017, 56: 5398–5406

    Article  Google Scholar 

  19. Prucnal P R, Shastri B J. Neuromorphic Photonics. Boca Raton: CRC, 2017

    Book  Google Scholar 

  20. Ghafoor S, Boujnah N, Rehmani M H, et al. MAC protocols for terahertz communication: a comprehensive survey. ArXiv: 1904.11441

  21. Petrov V, Pyattaev A, Moltchanov D, et al. Terahertz band communications: applications, research challenges, and standardization activities. In: Proceedings of 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Lisbon, 2016. 183–190

  22. Huo Y, Dong X, Xu W, et al. Enabling multi-functional 5G and beyond user equipment: a survey and tutorial. IEEE Access, 2019, 7: 116975–117008

    Article  Google Scholar 

  23. Wells J. Faster than fiber: the future of multi-G/s wireless. IEEE Microw Mag, 2009, 10: 104–112

    Article  Google Scholar 

  24. Rappaport T S, Xing Y, Kanhere O, et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access, 2019, 7: 78729–78757

    Article  Google Scholar 

  25. Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics. Nat Photon, 2016, 10: 371–379

    Article  Google Scholar 

  26. Mittendorff M, Li S, Murphy T E. Graphene-based waveguide-integrated terahertz modulator. ACS Photon, 2017, 4: 316–321

    Article  Google Scholar 

  27. Jornet J M, Akyildiz I F. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE J Sel Areas Commun, 2013, 31: 685–694

    Article  Google Scholar 

  28. Ali M, Pérez-Escudero J M, Guzmán-Martínez R C, et al. 300 GHz optoelectronic transmitter combining integrated photonics and electronic multipliers for wireless communication. J Photon, 2019, 6: 35

    Article  Google Scholar 

  29. Kurner T. Turning THz communications into reality: status on technology: standardization and regulation. In: Proceedings of 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, 2018. 1–3

  30. Renzo M D, Debbah M, Phan-Huy D T, et al. Smart radio environments empowered by reconfigurable AI metasurfaces: an idea whose time has come. J Wirel Commun Netw, 2019, 2019: 129

    Article  Google Scholar 

  31. Hu S, Rusek F, Edfors O. Beyond massive MIMO: the potential of data transmission with large intelligent surfaces. IEEE Trans Signal Process, 2018, 66: 2746–2758

    Article  MathSciNet  Google Scholar 

  32. Ourrat-Ul-Ain N, Abla K, Anas C, et al. Asymptotic analysis of large intelligent surface assisted MIMO communication. 2019. ArXiv: 1903.08127v2

  33. Hu S, Rusek R, Edfors O. The potential of using large antenna arrays on intelligent surfaces. In: Proceedings of IEEE 85th Vehicular Technology Conference, 2017. 1–6

  34. Ntontin K, Di Renzo M, Song J, et al. Reconfigurable intelligent surfaces vs. relaying: differences, similarities and performance comparison. 2019. ArXiv: 1908.08747v1

  35. Liaskos C, Nie S, Tsioliaridou A, et al. A new wireless communication paradiagm through software-controlled metasurfaces. IEEE Commun Mag, 2018, 56: 162–169

    Article  Google Scholar 

  36. Taha A, Alrabeiah M, Alkhateeb A. Enabling large intelligent surfaces with compressive sensing and deep learning. 2019. ArXiv: 1904.10136

  37. Thidé B, Then H, Sjöholm J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 2007, 99: 087701

    Article  Google Scholar 

  38. Zheng S L, Zhang Z F, Pan Y, et al. Plane spiral orbital angular momentum electromagnetic wave. In: Proceedings of IEEE Asia-Pacific Microwave Conference (APMC), Nanjing, 2015

  39. Lee D, Sasaki H, Fukumoto H, et al. An experiment of 100 Gbps wireless transmission using OAM-MIMO multiplexing in 28 GHz. In: Proceedings of IEEE Global Communications Conference, 2018

  40. Ren Y, Li L, Xie G, et al. Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing. IEEE Trans Wirel Commun, 2017, 16: 3151–3161

    Article  Google Scholar 

  41. Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon, 2011, 3: 161–204

    Article  Google Scholar 

  42. Zhang C, Ma L. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna. Sci Rep, 2017, 7: 4585

    Article  Google Scholar 

  43. Edfors O, Johansson A J. Is orbital angular momentum (OAM) based radio communication an unexploited Area? IEEE Trans Antenna Propagat, 2012, 60: 1126–1131

    Article  MathSciNet  Google Scholar 

  44. Oldoni M, Spinello F, Mari E, et al. Space-division demultiplexing in orbital-angular-momentum-based MIMO radio systems. IEEE Trans Antenna Propagat, 2015, 63: 4582–4587

    Article  MathSciNet  Google Scholar 

  45. Hui X, Zheng S, Chen Y, et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Sci Rep, 2015, 5: 10148

    Article  Google Scholar 

  46. Niemiec R, Brousseau C, Mahdjoubi K, et al. Characterization of an OAM antenna using a flat phase plate in the millimeter frequency band. In: Proceedings of IEEE European Conference on Antennas & Propagation, 2014

  47. Zhang Y, Peng K, Chen Z, et al. Construction of rate-compatible raptor-like quasi-cyclic LDPC code with edge classification for IDMA based random access. IEEE Access, 2019, 7: 30818–30830

    Article  Google Scholar 

  48. Davey M C, MacKay D. Low-density parity check codes over GF(q). IEEE Commun Lett, 1998, 2: 165–167

    Article  Google Scholar 

  49. Sommer N, Feder M, Shalvi O. Low-density lattice codes. IEEE Trans Inform Theor, 2008, 54: 1561–1585

    Article  MathSciNet  Google Scholar 

  50. Perry J. Spinal codes. In: Proceedings of ACM Sigcomm Conference on Applications, 2012. 49–60

  51. Rusek F. Partial response and faster-than-nyquist signaling. Dissertation for Ph.D. Degree. Lund: Lund University, 2007

    Google Scholar 

  52. 3GPP. Study on non-orthogonal multiple access (NOMA) for NR. TR 38.812. 2018. http://www.3gpp.org/

  53. Meng X M, Wu Y Q, Chen Y, et al. Low complexity receiver for uplink SCMA system via expectation propagation. 2017. ArXiv: 1701.01195

  54. Yuan Y. 5G non-orthogonal multiple access study. IEEE Wirel Commun, 2018, 25: 6–8

    Article  Google Scholar 

  55. Trivellin N, Yushchenko M, Buffolo M, et al. Laser-based lighting: experimental analysis and perspectives. Materials, 2017, 10: 1166

    Article  Google Scholar 

  56. Tsai C-T, Cheng C-H, Kuo H-C, et al. Toward high-speed visible laser lighting based optical wireless communications. Progress Quantum Electron, 2019, 67: 100225

    Article  Google Scholar 

  57. Cohen K, Nedic A, Srikant R. Distributed learning algorithms for spectrum sharing in spatial random access networks. In: Proceedings of the 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015

  58. Bhattarai S, Park J M, Gao B, et al. An overview of dynamic spectrum sharing: ongoing initiatives, challenges, and a roadmap for future research. IEEE Trans Cogn Commun Netw, 2017, 2: 110–128

    Article  Google Scholar 

  59. Romero D, Leus G. Wideband spectrum sensing from compressed measurements using spectral prior information. IEEE Trans Signal Process, 2013, 61: 6232–6246

    Article  MathSciNet  Google Scholar 

  60. 3GPP. Revised WID on cross link interference (CLI) handling and remote interference management (RIM) for NR, LG Electronics. RP-182864. 2018. http://www.3gpp.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Zhao or Sergio Parolari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zhao, Y., Zong, B. et al. Potential key technologies for 6G mobile communications. Sci. China Inf. Sci. 63, 183301 (2020). https://doi.org/10.1007/s11432-019-2789-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2789-y

Keywords

Navigation