Skip to main content
Log in

Synthesis and magnetic properties of CdS/α-Fe2O3 hierarchical nanostructures

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

CdS/α-Fe2O3 hierarchical nanostructures, where the CdS nanorods grow irregularly on the side surface of α-Fe2O3 nanorods, were synthesized via a three-step process. The diameters and lengths of CdS nanorods can be tuned by changing the ethylenediamine (EDA) and Cd ion concentrations. The magnetic investigations by superconducting quantum interference device indicate that the hierarchical nanostructures have an Morin transition at lower temperature (230 K) than that of the single bulk α-Fe2O3 materials (263 K). Importantly, the hierarchical nanostructures exhibit weakly ferromagnetic characteristics at 300 K. A sharp peak assigned to the surface trap induced emission are observed in room temperature PL spectra. Combining with the optoelectronic properties of CdS, the CdS/α-Fe2O3 hierarchical nanostructures may be used as multi-functional materials for optoelectronic and magnetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrelet C, Wu Y, Bell D C, et al. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J Am Chem Soc, 2003, 125(38): 11498–11499

    Article  Google Scholar 

  2. Chon J W M, Gu M, Bullen C, et al. Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals. Appl Phys Lett, 2004, 84(22): 4472–4474

    Article  ADS  Google Scholar 

  3. Hsu Y-J, Lu S Y. One-step preparation of coaxial CdS-ZnS nanowires. Chem Commn, 2004, 18: 2102–2103

    Article  Google Scholar 

  4. Kulik D, Htoon H, Shih C K, et al. Photoluminescence properties of single CdS nanorods. J Appl Phys, 2004, 95(3): 1056–1063

    Article  ADS  Google Scholar 

  5. Long Y Z, Chen Z J, Wang W L, et al. Electrical conductivity of single CdS nanowire synthesized by aqueous chemical growth. Appl Phys Lett, 2005, 86(15): 153102

    Google Scholar 

  6. Pan A, Liu R B, Wang Y G, et al. Stimulated emissions in aligned cds nanowires at room temperature. J Phys Chem B, 2005, 109(51): 24268–24272

    Article  Google Scholar 

  7. Acharya S, Patla I, Kost F, et al. Switchable assembly of ultra narrow CdS nanowires and nanorods. J Am Chem Soc, 2006, 128(29): 9294–9295

    Article  Google Scholar 

  8. Varfolomeev A, Zaretsky D, Pokalyakin V, et al. Admittance of CdS nanowires embedded in porous alumina template. Appl Phys Lett, 2006, 88(11): 113114

    Article  ADS  Google Scholar 

  9. Hoang T B, Titova L V, Jackson H E, et al. Temperature dependent photoluminescence of single CdS nanowires. Appl Phys Lett, 2006, 89(12): 123123

    Article  ADS  Google Scholar 

  10. Titova L V, Hoang T B, Jackson H E, et al. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl Phys Lett, 2006, 89(05): 053119

    Google Scholar 

  11. Ma R M, Dai L, Huo H B, et al. High-performance logic circuits constructed on single CdS nanowires. Nano Lett, 2007, 7(11): 3300–3304

    Article  ADS  Google Scholar 

  12. Ma R M, Dai L, Qin G G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires. Appl Phys Lett, 2007, 90(09): 093109

    Google Scholar 

  13. Li Y Q, Tang J X, Wang H, et al. Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons. Appl Phys Lett, 2007, 90(09): 093127

    Google Scholar 

  14. Martin C R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(5193): 1961–1966

    Article  ADS  Google Scholar 

  15. Steinhart M, Wendorff J H, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates. Science, 2002, 296(5575): 1997–1999

    Article  Google Scholar 

  16. Archibald D D, Mann S. Template mineralization of self-assembled anisotropic lipid microstructures. Nature, 1993, 364: 430–433

    Article  ADS  Google Scholar 

  17. Wen X G, Wang S H, Ding Y, et al. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J Phys Chem B, 2005, 109(1): 215–220

    Article  Google Scholar 

  18. Sone E D, Zubarev E R, Stupp S V. Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed, 2005, 41(10): 1705–1709

    Article  Google Scholar 

  19. Gong C R, Chen D R, Jiao X L, et al. Continuous hollow α-Fe2O3 and α-Fe fibers prepared by the sol-gel method. J Mater Chem, 2002, 12(6): 1844–1847

    Article  Google Scholar 

  20. Chen J, Xu L N, Li W Y, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater, 2005, 17(5): 582–586

    Article  Google Scholar 

  21. Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials. Angew Chem Int Ed, 2003, 42(31): 3604–3622

    Article  Google Scholar 

  22. Cao M, Liu T, Gao S, et al. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: Large-scale synthesis, formation mechanism, and properties. Angew Chem Int Ed, 2005, 44(27): 4197–4201

    Article  Google Scholar 

  23. Neri G, Bonavita A, Galvagno S, et al. CO and NO2 sensing properties of doped α-Fe2O3 thin films prepared by LPD. Sens Actuators B-Chem, 2002, 82(1): 40–47

    Article  Google Scholar 

  24. Sun Z Y, Yuan H Q, Liu Z M, et al. A highly efficient chemical sensor material for H2S:α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv Mater, 2005, 17(24): 2993–2997

    Article  Google Scholar 

  25. Tang B, Wang G, Zhuo L H, et al. Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg Chem, 2006, 45(13): 5196–5170

    Article  Google Scholar 

  26. Liu L, Kou H Z, Mo W L, et al. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B, 2006, 110(31): 15218–15223

    Article  Google Scholar 

  27. Lee Y C, Chueh Y L, Hsieh C H, et al. p-type α-Fe2O3 nanowires and their n-type transition in a reductive ambient. Small, 2007, 3(8): 1356–1361

    Article  Google Scholar 

  28. Lao J Y, Wen J G, Ren Z. Hierarchical ZnO nanostructures. Nano Lett, 2002, 2(11): 1287–1291

    Article  ADS  Google Scholar 

  29. Kuang Q, Jiang Z Y, Xie Z X, et al. Tailoring the optical property by a three-dimensional epitaxial heterostructure: A case of ZnO/SnO2. J Am Chem Soc, 2005, 127(33): 11777–11784

    Article  Google Scholar 

  30. Banerjee D, Jo S H, Ren Z F. Enhanced field emission of ZnO nanowires. Adv Mater, 2004, 16(22): 2028–2032

    Article  Google Scholar 

  31. Jo S H, Wang D Z, Huang Z Y, et al. Field emission of carbon nanotubes grown on carbon cloth. Appl Phys Lett, 2004, 85(5): 810–812

    Article  ADS  Google Scholar 

  32. Zeng B Q, Xiong G Y, Chen S, et al. Field emission of silicon nanowires grown on carbon cloth. Appl Phys Lett, 2007, 90(3): 033112

    Google Scholar 

  33. Chen Y J, Zhu C L, Shi X L, et al. The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology, 2008, 19(20): 205603

    Article  ADS  Google Scholar 

  34. Liu B, Lee J Y. Ordered alignment of CdS nanocrystals on MWCNTs without surface modification. J Phys Chem B, 2005, 109(50): 23783–23786

    Article  Google Scholar 

  35. Li Y C, Li X H, Yang C Y, et al. Controlled synthesis of CdS nanorods and hexagonal nanocrystals. J Mater Chem, 2003, 13(10): 2641–2648

    Article  Google Scholar 

  36. Wang Q Q, Zhao G L, Han G R. Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method. Mater Lett, 2005, 59(21): 2625–2629

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuJin Chen or MaoSheng Cao.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50772025 and 50872159), the Ministry of Science and Technology of China (Grant No. 2008DFR20420), the China Postdoctoral Science Foundation (Grant Nos. 20060400042 and 200801044), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200828), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070217002), and the Innovation Foundation of Harbin City (Grant No. RC2006QN017016)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Shi, X., Cao, M. et al. Synthesis and magnetic properties of CdS/α-Fe2O3 hierarchical nanostructures. Sci. China Ser. G-Phys. Mech. Astron. 52, 997–1002 (2009). https://doi.org/10.1007/s11433-009-0135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0135-9

Keywords

Navigation