Skip to main content
Log in

Magnetism induced by nonmagnetic dopants in zinc-blende SiC: First-principle calculations

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Magnetism induced by the nonmagnetic dopants in the zinc-blende SiC (3C-SiC) is investigated by first-principle calculations. The atoms of the first 20 elements in the periodic table except inert gas are used to replace either Si or C atoms as dopants. We find that some nonmagnetic substitutional dopants (mainly the Group IA, Group IIA, Group IIIB, and Group VIIB elements) prefer the spin-polarized ground states with local magnetic moments. In general, the condition for obtaining the local magnetic moments and the magnetic ground state requires that the dopants are p-type and have large electronegativity difference from the neighboring host atoms. The magnetic moments can be tuned over a range between 1 µ B and 3 µ B by doping with the nonmagnetic elements. The nearest-neighbor exchange couplings J 0 between the local magnetic moments are quite large and the codoping method is proposed to increase the dopant concentration. These imply that the nonmagnetic doping in SiC may exhibit collective magnetism. Moreover, the Group IIA Mg and Ca atoms substituting the preferred Si atoms favor the ferromagnetic ground states with the half-metallic electronic properties, which suggests that Mg or Ca substitutional doping on the Si sites in SiC could be a potential route to fabricating the diluted magnetic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiederling R, Keim M, Reuscher G, et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 1999, 402: 787–790

    Article  ADS  Google Scholar 

  2. Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 1999, 402: 790–792

    Article  ADS  Google Scholar 

  3. Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spinbased electronics vision for the future. Science, 2001, 294: 1488–1495

    Article  ADS  Google Scholar 

  4. Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287: 1019–1022

    Article  ADS  Google Scholar 

  5. Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63: 195205

    Article  ADS  Google Scholar 

  6. Pearton S J, Norton D P, Ip K, et al. Recent advances in processing of ZnO. J Vac Sci Technol B, 2004, 22: 932–948

    Article  Google Scholar 

  7. Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substituted zinc oxide. Phys Rev Lett, 2004, 93: 177206

    Article  ADS  Google Scholar 

  8. Yoon S D, Chen Y, Don H, et al. Room temperature magnetism in semiconducting films of ZnO doped with ferric ions. J Appl Phys, 2006, 99: 08M109

    Article  Google Scholar 

  9. Liu H X, Wu S Y, Singh R K, et al. Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN. Appl Phys Lett, 2004, 85: 4076–4078

    Article  ADS  Google Scholar 

  10. Lin H, Duan H M. Local electronic structure and magnetic properties of 3d transition metal doped GaAs. Sci China Ser G-Phys Mech Astron, 2008, 51: 470–480

    Article  ADS  Google Scholar 

  11. MacDonald A H, Schiffer P, Samarth N. Ferromagnetic semiconductors: Moving beyond (Ga,Mn)As. Nat Mater, 2005, 4: 195–202

    Article  ADS  Google Scholar 

  12. Theodoropoulou N, Hebard A F, Chu S N G, et al. Magnetic and structural properties of Fe, Ni, and Mn-implanted SiC. J Vac Sci Technol A, 2002, 20: 579–582

    Article  ADS  Google Scholar 

  13. Stromberg F, Keune W, Chen X, et al. The origin of ferromagnetism in 57Fe ion-implanted semiconducting 6H-polytype silicon carbide. J Phys-Condens Matter, 2006, 18: 9881–9900

    Article  ADS  Google Scholar 

  14. Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291: 854–856

    Article  ADS  Google Scholar 

  15. Hou X G, Huang M D, Wu X L, et al. First-principles calculations on implanted TiO2 by 3d transition metal ions. Sci China Ser G-Phys Mech Astron, 2009, 52: 838–842

    Article  ADS  Google Scholar 

  16. Feng X. Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO. J Phys-Condens Matter, 2004, 16: 4251–4259

    Article  ADS  Google Scholar 

  17. Ye L H, Freeman A J, Delley B. Half-metallic ferromagnetism in Cudoped ZnO: Density functional calculations. Phys Rev B, 2006, 73: 033203

    Article  ADS  Google Scholar 

  18. Huang L M, Rosa A L, Ahuja R. Ferromagnetism in Cu-doped ZnO from first-principles theory. Phys Rev B, 2006, 74: 075206

    Article  ADS  Google Scholar 

  19. Buchholz D B, Chang R P H, Song J H, et al. Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl Phys Lett, 2005, 87: 082504

    Article  ADS  Google Scholar 

  20. Hou D L, Ye X J, Meng H J, et al. Magnetic properties of n-type Cudoped ZnO thin films. Appl Phys Lett, 2007, 90: 142502

    Article  ADS  Google Scholar 

  21. Lee J H, Choi I H, Shin S, et al. Room-temperature ferromagnetism of Cu-implanted GaN. Appl Phys Lett, 2007, 90: 032504

    Article  ADS  Google Scholar 

  22. Wu R Q, Peng GW, Liu L, et al. Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Appl Phys Lett, 2006, 89: 062505

    Article  ADS  Google Scholar 

  23. Jia W, Han P, Chi M, et al. Electronic structure and ferromagnetic properties of Cu-doped AlN from first principles. J Appl Phys, 2007, 101: 113918

    Article  ADS  Google Scholar 

  24. Fan S W, Yao K L, Liu Z L, et al. Ferromagnetic properties, electronic structure, and formation energy of Ga0.9375M0.0625N (M= vacancy, Ca) by first principles study. J Appl Phys, 2008, 104: 043912

    Article  ADS  Google Scholar 

  25. Osuch K, Lombardi E B, Adamowicz L. Palladium in GaN: A 4d metal ordering ferromagnetically in a semiconductor. Phys Rev B, 2005, 71: 165213

    Article  ADS  Google Scholar 

  26. Wu R Q, Peng GW, Liu L, et al. Ferromagnetism in Mg-doped AlN from ab initio study. Appl Phys Lett, 2006, 89: 142501

    Article  ADS  Google Scholar 

  27. Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett, 2007, 99: 127201

    Article  ADS  Google Scholar 

  28. Yu C F, Lin T J, Sun S J, et al. Origin of ferromagnetism in nitrogen embedded ZnO: N thin films. J Phys D, 2007, 40: 6497–6500

    Article  ADS  Google Scholar 

  29. Shen L, Wu R Q, Pan H, et al. Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations. Phys Rev B, 2008, 78: 073306

    Article  ADS  Google Scholar 

  30. Kenmochi K, Seike M, Sato K, et al. New class of diluted ferromagnetic semiconductors based on CaO without transition metal elements. Jpn J Appl Phys, 2004, 43: L934–L936

    Article  ADS  Google Scholar 

  31. Elfimov I S, Rusydi A, Csiszar S I, et al. Magnetizing oxides by substituting nitrogen for oxygen. Phys Rev Lett, 2007, 98: 137202

    Article  ADS  Google Scholar 

  32. Song B, Bao H Q, Li H, et al. Observation of glassy ferromagnetism in Al-doped 4H-SiC. J Am Chem Soc, 2009, 131: 1376–1377

    Article  Google Scholar 

  33. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561; Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269; Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50; Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  ADS  Google Scholar 

  34. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  ADS  Google Scholar 

  35. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  ADS  Google Scholar 

  36. Zywietz A, Furthmüller J, Bechstedt F. Vacancies in SiC: Influence of Jahn-Teller distortions, spin effects, and crystal structure. Phys Rev B, 1999, 59: 15166–15180

    Article  ADS  Google Scholar 

  37. Dev P, Xue Y, Zhang P. Defect-induced intrinsic magnetism in wide-gap III nitrides. Phys Rev Lett, 2008, 100: 117204

    Article  ADS  Google Scholar 

  38. Zhang S B, Wei S H, Zunger A. Overcoming doping bottlenecks in semiconductors and wide-gap materials. Physica B, 1999, 273–274: 976–980

    Article  Google Scholar 

  39. Yamamoto T. Codoping method for solutions of doping problems in wide-band-gap semiconductors. Phys Stat Sol (a), 2002, 193: 423–433

    Article  Google Scholar 

  40. Neugebauer J, Van de Walle C G. Role of hydrogen in doping of GaN. Appl Phys Lett, 1996, 68: 1829–1831

    Article  ADS  Google Scholar 

  41. Han B, Gregie J M, Wessels B W. Blue emission band in compensated GaN:Mg codoped with Si. Phys Rev B, 2003, 68: 045205

    Article  ADS  Google Scholar 

  42. Korotkov R Y, Gregie J M, Wessels B W. Electrical properties of p-type GaN: Mg codoped with oxygen. Appl Phys Lett, 2001, 78: 222–224

    Article  ADS  Google Scholar 

  43. Brandt O, Yang H, Kostial H, et al. High p-type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant. Appl Phys Lett, 1996, 69: 2707–2709

    Article  ADS  Google Scholar 

  44. Katayama-Yoshida H, Nishimatsu T, Yamamoto T, et al. Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: Prediction versus experiment. J Phys-Condens Matter, 2001, 13: 8901–8914

    Article  ADS  Google Scholar 

  45. Tsukazaki A, Saito H, Tamura K, et al. Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Appl Phys Lett, 2002, 81: 235–237

    Article  ADS  Google Scholar 

  46. Yamamoto T, Kishimoto S, Iida S. Materials design for p-type ZnS with blue Ag emission by triple-codoping method. Phys Stat Sol (b), 2002, 229: 371–375

    Article  Google Scholar 

  47. Mueller D C, Fichtner W. Codoping as a measure against donor deactivation in Si: Ab initio calculations. Phys Rev B, 2006, 73: 035210

    Article  ADS  Google Scholar 

  48. Aradi B, Gali A, Deák P, et al. Ab initio density-functional supercell calculations of hydrogen defects in cubic SiC. Phys Rev B, 2001, 63: 245202

    Article  ADS  Google Scholar 

  49. Gali A, Heringer D, Deák P, et al. Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study. Phys Rev B, 2002, 66: 125208

    Article  ADS  Google Scholar 

  50. Rurali R, Godignon P, Rebollo J, et al. First-principles study of n-type dopants and their clustering in SiC. Appl Phys Lett, 2003, 82: 4298–4300 doi: 10.1007/s11433-010-0107-0

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ni.

Additional information

Recommended by LONG GuiLu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Ni, J. Magnetism induced by nonmagnetic dopants in zinc-blende SiC: First-principle calculations. Sci. China Phys. Mech. Astron. 53, 1–10 (2010). https://doi.org/10.1007/s11433-010-0085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0085-2

Keywords

Navigation