Skip to main content
Log in

A fractal study for nucleate pool boiling heat transfer of nanofluids

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, a fractal model for nucleate pool boiling heat transfer of nanofluids is developed based on the fractal distribution of nanoparticles and nucleation sites on boiling surfaces. The model shows the dependences of the heat flux on nanoparticle size and the nanoparticle volume fraction of the suspension, the fractal dimension of the nanoparticle and nucleation site, temperature of nanofluids and properties of fluids. The fractal model predictions show that the natural convection stage continues relatively longer in the case of nanofluids. The addition of nanoparticles causes a decrease of the pool nucleate boiling heat transfer. The nucleate pool boiling heat transfer coefficient is decreased by increasing particle concentration. An excellent agreement between the proposed model predictions and experimental data is found. The validity of the fractal model for nucleate pool boiling heat transfer is thus verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das S K, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transfer, 2003, 46: 851–862

    Article  Google Scholar 

  2. You S M, Kim J H, Kim K H. Effect of nano-particles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett, 2003, 83: 3374–3376

    Article  ADS  Google Scholar 

  3. Vassallo P, Kumar R D, Amico S. Pool boiling heat transfer experiments in silica-water nanofluids. Int J Heat Mass Transfer, 2004, 47: 407–411

    Article  Google Scholar 

  4. Prasher R, Bhattacharya P, Phelan P E. Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett, 2005, 94: 025901-1–4

    Article  ADS  Google Scholar 

  5. Bang I C, Chang S H. Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool. Int J Heat Mass Transfer, 2005, 48: 2407–2419

    Article  Google Scholar 

  6. Bang I C, Chang S H. Direct observation of a liquid film under a vapor environment in a pool boiling using a nanofluid. Appl Phys Lett, 2005, 86: 134107-1–3

    Article  ADS  Google Scholar 

  7. Liu Z H, Liao L. Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int J Heat Mass Transfer, 2008, 51: 2593–2602

    Article  Google Scholar 

  8. Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids. Int J Heat Mass Transfer, 2009, 52: 1582–1588

    Article  Google Scholar 

  9. Mikic B B, Rohsenow W M. A new correlation of pool boiling data including the effect of heating surface characteristic. J Heat Transfer, 1969, 91: 245–250

    Google Scholar 

  10. Kim S J, Bang I C, Buongiorno J, et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 2006, 89: 153107-1–3

    ADS  Google Scholar 

  11. Vafaei S, Borca-Tasciuc T, Podowski M Z, et al. Effect of nanoparticles on sessile droplet contact angle. Nanotechnology, 2006, 17: 2523–2527

    Article  ADS  Google Scholar 

  12. Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transfer, 2007, 50: 4105–4116

    Article  Google Scholar 

  13. Coursey J S, Kim J. Nanofluid boiling: The effect of surface wettability. Int J Heat Fluid Flow, 2008, 29: 1577–1585

    Article  Google Scholar 

  14. Narayan P, Anoop K B, Sateesh G, et al. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. Int J Multiphase Flow, 2008, 34: 145–160

    Article  Google Scholar 

  15. Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer, 2003, 46: 2665–2672

    Article  MATH  Google Scholar 

  16. Yu B M, Cheng P. Fractal models for the effective thermal conductivity of bidispersed porous media. Thermophysics and heat transfer. AIAA J, 2002, 16: 22–29

    Google Scholar 

  17. Yu B M, Cheng P. A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transfer, 2002, 45: 2983–2993

    Article  MATH  Google Scholar 

  18. Yu B M, Li J H. Some fractal characters of porous media. Fractals, 2001, 9: 365–372

    Article  MathSciNet  Google Scholar 

  19. Feng Y J, Yu B M, Zou M Q, et al. A generalized model for the effective thermal conductivity of porous media based on self-similarity. J Phys D-Appl Phys, 2004, 37: 3030–3040

    Article  ADS  Google Scholar 

  20. Prasher R, Bhattacharya P E, Phelan P. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transfer, 2006, 128: 588–595

    Article  Google Scholar 

  21. Tomitika S, Aoi T, Yosinabu H. On the forces acting on a circular cylinder set obliquely in uniform stream at lower values of Reynolds number. Proc R Soc London Ser A, 1953, 129: 233–244

    ADS  Google Scholar 

  22. Maxwell J C. A Treatise on Electricity and Magnetism. Cambridge: Cambridge Oxford University Press, 1954

    MATH  Google Scholar 

  23. Bier K, Gorenflo D, Salem M, et al. Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness. Proceedings of 6th International Heat Transfer Conference, Toronto. 1978, 1: 151–156

    Google Scholar 

  24. Cornwell K, Brown R D. Boiling surface topography. Proceedings of 6th International Heat Transfer Conference, Toronto. 1978, 1: 157–161

    Google Scholar 

  25. Yang S R, Kim R H. A mathematical model of pool boiling nucleation site density in terms of surface characteristics. Int J Heat Mass Transfer, 1988, 31: 1127–1135

    Article  Google Scholar 

  26. Kocamustafaogullari G, Ishii M. Interfacial area and nucleation site density in boiling systems. Int J Heat Mass Transfer, 1983, 26: 1377–1387

    Article  Google Scholar 

  27. Jakob M. Heat Transfer. New York: Wiley, 1949

    Google Scholar 

  28. Gaertner R F, Westwater J W. Population of active sites in nucleate boiling heat transfer. Chem Eng Prog Symp, 1960, Ser 56: 39–48

    Google Scholar 

  29. Paul D D, Abdel-Khalik S I. A statistical analysis of saturated nucleate boiling along a heat wire. Int J Heat Mass Transfer, 1983, 26: 509–519

    Article  Google Scholar 

  30. Wang C H, Dhir V K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J Heat Transfer, 1993, 115: 659–669

    Article  Google Scholar 

  31. Hibiki T, Ishii M. Active nucleation site density in boiling systems. Int J Heat Mass Transfer, 2003, 46: 509–519

    Google Scholar 

  32. Xiao B Q, Yu B M. A fractal model for critical heat flux in pool boiling. Int J Therm Sci, 2007, 46: 426–433

    Article  Google Scholar 

  33. Yu B M, Cheng P. A fractal model for nucleate pool boiling heat transfer. J Heat Transfer, 2002, 124: 1117–1124

    Article  Google Scholar 

  34. Xiao B Q, Yu B M. A fractal analysis of subcooled flow boiling heat transfer. Int J Multiph Flow, 2007, 33: 1126–1139

    Article  Google Scholar 

  35. Xiao B Q, Wang Z C, Yu B M. A fractal analysis of subcooled nucleate pool boiling. Fractals, 2008, 16: 1–9

    Article  MATH  Google Scholar 

  36. Griffith P, Wallis J D. The role of surface condition in nucleate boiling. Chem Eng Symp, 1960, 56: 49–63

    Google Scholar 

  37. Van der Geld C W M. Bubble detachment criteria: Some criticism of ‘Das Abreissen von Dampfblassen an festen Heizflachen’. Int J Heat Mass Transf, 1996, 39: 653–657

    Article  MATH  Google Scholar 

  38. Mori B K, Baines W D. Bubble departure from cavities. Int J Heat Mass Transf, 2001, 44: 771–783

    Article  Google Scholar 

  39. Rohsenow W M. Boiling. Hand book of heat transfer. New York: McGraw-Hill, 1973. 3–121

    Google Scholar 

  40. Judd R L, Hwang K S. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. Int J Heat Mass Transf, 1976, 98: 623–629

    Google Scholar 

  41. Han C, Griffith P. The mechanism of heat transfer in nucleate pool boiling — Part I and II. Int J Heat Mass Transf, 1965, 8: 887–913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoQi Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, B., Jiang, G. & Chen, L. A fractal study for nucleate pool boiling heat transfer of nanofluids. Sci. China Phys. Mech. Astron. 53, 30–37 (2010). https://doi.org/10.1007/s11433-010-0114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0114-1

Keywords

Navigation