Skip to main content
Log in

Convergence for Imaginary Time Step evolution in the Fermi and Dirac seas

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The convergence for the Imaginary Time Step (ITS) evolution with time step is investigated by performing the ITS evolution for the Schrödinger-like equation and the charge-conjugate Schrödinger-like equation deduced from Dirac equation for the single proton levels of 12C in both the Fermi and Dirac seas. For the guaranteed convergence of the ITS evolution to the “exact” results, the time step should be smaller than a “critical” time step Δt c for a given single-particle level. The “critical” time step Δt c is more sensitive to the quantum numbers |κ| than to the energy of the single-particle level. For the single-particle levels with the same κ, their “critical” time steps are in the same order. For the single-particle levels with similar energy, a relatively small (large) “critical” time step for larger (smaller) |κ| is needed. These conclusions can be used in the future self-consistent calculation to optimize the evolution procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanihata I, Hamagaki H, Hashimoto O, et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys Rev Lett, 1985, 55: 2676–2679

    Article  ADS  Google Scholar 

  2. Bertulani C A, Hussein M S, Münzengerg G. Physics of Radioactive Beams. New York: Nova Science Publishers, Inc, 2001

    Google Scholar 

  3. Jonson B. Light dripline nuclei. Phys Rep, 2004, 389: 1–59

    Article  ADS  Google Scholar 

  4. Jensen A S, Riisager K, Fedorov D V, et al. Structure and reactions of quantum halos. Rev Mod Phys, 2004, 76: 215–261

    Article  ADS  Google Scholar 

  5. Xu H S, Tu X L, Yuan Y J, et al. First mass measurement of short-lived nuclides at HIRFL-CSR. Chinese Sci Bull, 2009, 54: 4749–4752

    Article  Google Scholar 

  6. Sun Y. Nuclear masses near the proton drip-line and their impact on nucleosynthesis in explosive stars. Chinese Sci Bull, 2009, 54: 4594–4595

    Article  Google Scholar 

  7. Serot B D, Walecka J D. The relativistic nuclear many-body problem. Adv Nucl Phys, 1986, 16: 1–327

    Google Scholar 

  8. Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys, 1996, 37: 193–263

    Article  ADS  Google Scholar 

  9. Vretenar D, Afanasjev A V, Lalazissis G A, et al. Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys Rep, 2005, 40: 101–259

    Article  ADS  Google Scholar 

  10. Meng J, Toki H, Zhou S G, et al. Relativisitc continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys, 2006, 57: 470–563

    Article  ADS  Google Scholar 

  11. Li J, Zhang Y, Yao J M, et al. Magnetic moments of 33Mg in the timeodd relativistic mean field approach. Sci China Ser G-PhysMech Astron, 2009, 52: 1586–1592

    Article  MathSciNet  Google Scholar 

  12. Meng J, Ring P. Relativistic Hartree-Bogoliubov description of the neutron halo in 11Li. Phys Rev Lett, 1996, 77: 3963–3966

    Article  ADS  Google Scholar 

  13. Meng J, Tanihata I. Yamaji S. The proton and neutron distributions in Na isotopes: The development of halo and shell structure. Phys Lett B, 1998, 419: 1–6

    Article  ADS  Google Scholar 

  14. Meng J, Ring P. Giant halo at the neutron drip line. Phys Rev Lett, 1998, 80: 460–463

    Article  ADS  Google Scholar 

  15. Price C E, Walker G E. Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory. Phys Rev C, 1987, 36: 354–364

    Article  ADS  Google Scholar 

  16. Meng J, Lü H F, Zhang S Q, et al. Giant, hyperon, and deformed halos near the particle drip line. Nucl Phys A, 2003, 722: 366c–371c

    Article  ADS  Google Scholar 

  17. Zhou S G, Meng J, Ring P. Spherical relativistic Hartree theory in a Woods-Saxon basis. Phys Rev C, 2003, 68: 034323

    Article  ADS  Google Scholar 

  18. Davies K T R, Flocard H, Krieger S, et al. Application of the imaginary time step method to the solution of the static Hartree-Fock problem. Nucl Phys A, 1980, 342: 111–123

    Article  MathSciNet  ADS  Google Scholar 

  19. Zhang Y, Liang H Z, Meng J. Avoid the Tsunami of the Dirac sea in the imaginary time step method. arXiv, 0905.2505v1 [nucl-th]

  20. Zhang Y, Liang H Z, Meng J. Solving the Dirac equation with Nonlocal potential by imaginary time step method. Chin Phys Lett, 2009, 26: 092401

    Article  Google Scholar 

  21. Bonche P, Flocard H, Heenen P H. Solution of the Skyrme HF + BCS equation on a 3D mesh. Comput Phys Commun, 2005, 171: 49–62

    Article  ADS  Google Scholar 

  22. Zhang H, Lu W T, Wang S J. Algebraic dynamics solution and algebraic dynamics algorithm of Burgers equations. Sci China Ser G-Phys Mech Astron, 2008, 51: 1647–1652

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng.

Additional information

Recommended by LONG GuiLu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Zhang, Y. & Meng, J. Convergence for Imaginary Time Step evolution in the Fermi and Dirac seas. Sci. China Phys. Mech. Astron. 53, 327–330 (2010). https://doi.org/10.1007/s11433-010-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0121-2

Keywords

Navigation