Skip to main content
Log in

Carbon nanotube transistors with graphene oxide films as gate dielectrics

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Carbon nanomaterials, including the one-dimensional (1-D) carbon nanotube (CNT) and two-dimensional (2-D) graphene, are heralded as ideal candidates for next generation nanoelectronics. An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide. Here, in analogy to the widespread use of silicon dioxide (SiO2) in silicon microelectronic industry, we report the proof-of-principle use of graphite oxide (GO) as a gate dielectrics for CNT field-effect transistor (FET) via a fast and simple solution-based processing in the ambient condition. The exceptional transistor characteristics, including low operation voltage (2 V), high carrier mobility (950 cm2/V−1 s−1), and the negligible gate hysteresis, suggest a potential route to the future all-carbon nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avouris P. Molecular electronics with carbon nanotubes. Acc Chem Res, 2002, 35: 1026–1034

    Article  Google Scholar 

  2. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–57

    Article  ADS  Google Scholar 

  3. Trans S J, Verschueren A, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52

    Article  ADS  Google Scholar 

  4. Rueckes T, Kim K, Joselevich E, et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 2000, 289: 94–97

    Article  ADS  Google Scholar 

  5. Appenzeller J, Knoch J, Derycke V, et al. Field-modulated carrier transport in carbon nanotube transistors. Phys Rev Lett, 2002, 89: 126801–126804

    Article  ADS  Google Scholar 

  6. Javery A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424: 654–657

    Article  ADS  Google Scholar 

  7. Fuhrer M S, Kmin B M, Durkop T, et al. High-mobility nanotube transistor memory. Nano Lett, 2002, 2: 755–759

    Article  ADS  Google Scholar 

  8. Radosavljevic M, Freitag M, Thadani K V, et al. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistors. Nano Lett, 2002, 2: 761–764

    Article  ADS  Google Scholar 

  9. Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors. Science, 2001, 294: 1317–1320

    Article  ADS  Google Scholar 

  10. Derycke V, Martel R, Appenzeller J, et al. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 2001, 1: 453–456

    Article  ADS  Google Scholar 

  11. Weitz R T, Zschieschang U, Effenberger F, et al. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. Nano Lett, 2007, 7: 22–27

    Article  ADS  Google Scholar 

  12. Fu L, Liu Y Q, Liu Z M, et al. Carbon nanotubes coated with alumina as gate dielectrics of field-effect transistors. Adv Mater, 2006, 18: 181–185

    Article  Google Scholar 

  13. Javey A, Kim H, Brink M, et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater, 2002, 1: 241–246

    Article  ADS  Google Scholar 

  14. Chen Z H, Appenzeller J, Lin Y M, et al. An integrated logic circuit assembled on a single carbon nanotube. Science, 2006, 311: 1735

    Article  Google Scholar 

  15. Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended grapheme. Nat Nanotech, 2008, 3: 491–495

    Article  ADS  Google Scholar 

  16. Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706–710

    Article  ADS  Google Scholar 

  17. Westervelt R M. Applied physics: graphene nanoelectronics. Science, 2008, 320: 324–325

    Article  Google Scholar 

  18. Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all-semi-conducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803

    Article  ADS  Google Scholar 

  19. Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442: 282–286

    Article  ADS  Google Scholar 

  20. Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of C-13-labeled graphite oxide. Science, 2008, 321: 1815–1817

    Article  ADS  Google Scholar 

  21. Mkhoyan K A, Contryman A W, Silcox J, et al. Atomic and electronic structure of graphene-oxide. Nano Lett, 2009, 9: 1058–1063

    Article  ADS  Google Scholar 

  22. Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448: 457–460

    Article  ADS  Google Scholar 

  23. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotech, 2008, 3: 270–274

    Article  Google Scholar 

  24. Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxide molecular sensors. Nano Lett, 2008, 8: 3137–3140

    Article  ADS  Google Scholar 

  25. Gomez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 2007, 7: 3499–3503

    Article  ADS  Google Scholar 

  26. Cote L J, Kim F, Huang J X. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131: 1043–1049

    Article  Google Scholar 

  27. Weiss P. Looking for Mr. Goodoxide. Sci News, 2000, 157: 204

    Article  Google Scholar 

  28. Hummers W S, Offeman R E. Preparation of graphitic oxide. J Am Chem Soc, 1958, 80: 1339

    Article  Google Scholar 

  29. Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater, 1999, 11: 771–778

    Article  Google Scholar 

  30. Robinson J T, Zalalutdinov M, Baldwin J W, et al. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett, 2008, 8: 3441–3445

    Article  ADS  Google Scholar 

  31. Fu W Y, Xu Z, Bai X D, et al. Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett, 2009, 9: 921–925

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XueDong Bai or EnGe Wang.

Additional information

Recommended by NIE YuXin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, W., Liu, L., Wang, W. et al. Carbon nanotube transistors with graphene oxide films as gate dielectrics. Sci. China Phys. Mech. Astron. 53, 828–833 (2010). https://doi.org/10.1007/s11433-010-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0179-x

Keywords

Navigation