Skip to main content
Log in

A study on the sharp knee and fine structures of cosmic ray spectra

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The paper investigates the overall and detailed features of cosmic ray (CR) spectra in the knee region using the scenario of nuclei-photon interactions around the acceleration sources. Young supernova remnants can be the physical realities of such kind of CR acceleration sites. The results show that the model can well explain the following problems simultaneously with one set of source parameters: the knee of CR spectra and the sharpness of the knee, the detailed irregular structures of CR spectra, the so-called “component B” of Galactic CRs, and the electron/positron excesses reported by recent observations. The coherent explanation serves as evidence that at least a portion of CRs might be accelerated at the sources similar to young supernova remnants, and one set of source parameters indicates that this portion mainly comes from standard sources or from a single source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulikov G V, Kristiansen G B. On the size spectrum of extensive air showers. J Exp Theor Phys, 1958, 35: 441–444

    Google Scholar 

  2. Kobayakawa K, Honda Y S, Samura T. Acceleration by oblique shocks at supernova remnants and cosmic ray spectra around the knee region. Phys Rev D, 2002, 66: 083004

    Article  ADS  Google Scholar 

  3. Sveshnikova L G. The knee in the Galactic cosmic ray spectrum and variety in Supernovae. Astron Astrophys, 2003, 409: 799–807

    Article  ADS  Google Scholar 

  4. Erlykin A D, Wolfendale A W. Structure in the cosmic ray spectrum: An update. J Phys G-Nucl Phys, 2001, 27: 1005–1030

    Article  ADS  Google Scholar 

  5. Ptuskin V S, Rogovaya S I, Zirakashvili V N, et al. Diffusion and drift of very high energy cosmic rays in galactic magnetic fields. Astron Astrophys, 1993, 268: 726–735

    ADS  Google Scholar 

  6. Roulet E. Astroparticle theory: Some new insights into high energy cosmic rays. Int J Mod Phys A, 2004, 19: 1133–1141

    Article  ADS  Google Scholar 

  7. Lagutin A A, Nikulin Y A, Uchaikin V V. The “knee” in the primary cosmic ray spectrum as consequence of the anomalous diffusion of the particles in the fractal interstellar medium. Nucl Phys B Proc Suppl, 2001, 97: 267–270

    Article  ADS  Google Scholar 

  8. Karakula S, Tkaczyk W. The formation of the cosmic ray energy spectrum by a photon field. Astropart Phys, 1993, 1: 229–237

    Article  ADS  Google Scholar 

  9. Candia J, Epele L N, Roulet E. Cosmic ray photodisintegration and the knee of the spectrum. Astropart Phys, 2002, 17: 23–33

    Article  ADS  Google Scholar 

  10. Wigmans R. PeV cosmic rays: a window on the leptonic era? Astropart Phys, 2003, 19: 379–392

    Article  ADS  Google Scholar 

  11. Nikolsky S I, Romachin V A. Cosmic rays of energies in the range 103–105 TeV and higher. Phys Atom Nucl, 2000, 63: 1799–1814

    Article  ADS  Google Scholar 

  12. Kazanas D, Nicolaidis A. Cosmic ray knee: A herald of new physics? Int Cosmic Ray Conf, 2001, 5: 1760

    ADS  Google Scholar 

  13. Amenomori M, Bi X J, Chen D, et al. The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III Air-Shower Array. Astrophys J, 2008, 678: 1165–1179

    Article  ADS  Google Scholar 

  14. Apel W D, Arteaga J C, Badea A F, et al. Energy spectra of elemental groups of cosmic rays: Update on the KASCADE unfolding analysis. Astrophys J, 2009, 31: 86–91

    Google Scholar 

  15. Garyaka A P, Martirosov R M, Ter-Antonyan S V, et al. An all-particle primary energy spectrum in the 3–200 PeV energy range. J Phys G-Nucl Phys, 2008, 35: 115201

    Article  ADS  Google Scholar 

  16. Ivanov A A, Knurenko S P, Sleptsov I Y, et al. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: The energy spectrum of cosmic rays. New J Phys, 2009, 11: 065008

    Article  Google Scholar 

  17. Chilingarian A, Gharagyozyan G, Ghazaryan S, et al. Study of extensive air showers and primary energy spectra by MAKET-ANI detector on mountain Aragats. Astropart Phys, 2007, 28: 58–71

    Article  ADS  Google Scholar 

  18. Shibata M. About the cosmic-ray spectrum around the knee. Int Cosmic Ray Conf, 2009, 0295

  19. Erlykin A D, Wolfendale A W. The knee in the cosmic ray energy spectrum. Int Cosmic Ray Conf, 2009, 0301, ArXiv: 0906.3949

    Google Scholar 

  20. Hu H B. Status of the EAS studies of cosmic rays with energy below 1016 eV. Int Cosmic Ray Conf, 2009, ArXiv: 0911.3034

  21. Hillas A M. Topical Review: Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J Phys G-Nucl Phys, 2005, 31: R95–R131

    Article  ADS  Google Scholar 

  22. Adriani O, Barbarino G C, Bazilevskaya G A, et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature, 2009, 458: 607–609

    Article  ADS  Google Scholar 

  23. Chang J, Adams J H, Ahn H S, et al. An excess of cosmic ray electrons at energies of 300–800 GeV. Nature, 2008, 456: 362–365

    Article  ADS  Google Scholar 

  24. Aharonian F, Akhperjanian A G, Barres de Almeida U, et al. Energy spectrum of cosmic-ray electrons at TeV energies. Phys Rev Lett, 2008, 101: 261104

    Article  ADS  Google Scholar 

  25. Aharonian F, Akhperjanian A G, Barres de Almeida U, et al. Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. Astron Astrophys, 2009, 508: 561–564

    Article  ADS  Google Scholar 

  26. Abdo A A, Ackermann M, Ajello M, et al. Measurement of the Cosmic Ray e+e Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. Phys Rev Lett, 2009, 102: 181101

    Article  ADS  Google Scholar 

  27. Serpico P D. Possible causes of a rise with energy of the cosmic ray positron fraction. Phys Rev D, 2009, 79: 021302

    Article  ADS  Google Scholar 

  28. Hu H B, Yuan Q, Wang B, et al. On the e+e excesses and the knee of the Cosmic Ray Spectra—Hints of cosmic ray acceleration in young supernova remnants. Astrophys J, 2009, 700: L170–L173

    Article  ADS  Google Scholar 

  29. Blumenthal G R. Energy loss of high-energy cosmic rays in pair-producing collisions with ambient photons. Phys Rev D, 1970, 1: 1596–1602

    Article  ADS  Google Scholar 

  30. Puget J L, Stecker F W, Bredekamp J H. Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences. Astrophys J, 1976, 205: 638–654

    Article  ADS  Google Scholar 

  31. Amsler C, Doser M, Antonelli M, et al (Particle Data Group). Review of particle physics. Phys Lett B, 2008, 667: 1–5

    Article  ADS  Google Scholar 

  32. Stanev T, Gaisser T K, Halzen F. Muons in gamma showers from Cygnus X-3? Phys Rev D, 1985, 32: 1244–1247

    Article  ADS  Google Scholar 

  33. Horandel J R. On the knee in the energy spectrum of cosmic rays. Astropart Phys, 2003, 19: 193–220

    Article  ADS  Google Scholar 

  34. Stecker F W. Effect of photomeson production by the universal radiation field on high-energy cosmic rays. Phys Rev Lett, 1968, 21: 1016

    Article  ADS  Google Scholar 

  35. Bertaina M, Battistoni G, Muraro S, et al. The cosmic ray primary spectrum in the transition region between direct and indirect measurements (10 TeV–10 PeV). J Phys Conf Ser, 2008, 120: 062023

    Article  ADS  Google Scholar 

  36. Putze A, Derome L, Maurin D, et al. A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays. I. Method and results for the Leaky-Box model. Astron Astrophys, 2009, 497: 991–1007

    Article  ADS  Google Scholar 

  37. Amenomori M, Ayabe S, Chen D, et al. Are protons still dominant at the knee of the cosmic-ray energy spectrum? Phys Lett B, 2006, 632: 58–64

    Article  ADS  Google Scholar 

  38. Apel W D, Arteaga J C, Badea A F, et al. KASCADE measurement of energy spectra for elemental groups of cosmic rays: Results and open problems. Astropart Phys, 2005, 24: 1–25

    Article  ADS  Google Scholar 

  39. Yoon Y S, Ahn H S, Allison P S, et al. H and He spectra from the 2004/05 CREAM flight. Int Cosmic Ray Conf, 2008, 2: 55–58

    Google Scholar 

  40. Alcaraz J, Alpat B, Ambrosi G, et al. Cosmic protons. Phys Lett B, 2000, 490: 27–35

    Article  ADS  Google Scholar 

  41. Haino S, Sanuki T, Abe K, et al. The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I - results from the test flight on the space shuttle. Phys Rept, 2002, 366: 331–405

    Article  ADS  Google Scholar 

  42. Panov A D, Adams J H, Ahn H S, et al. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull Russ Acad Sci-Phys, 2009, 73: 564–567

    Article  Google Scholar 

  43. Haino S, Sanuki T, Abe K, et al. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Phys Lett B, 2004, 594: 35–46

    Article  ADS  Google Scholar 

  44. Gupta S K, Antia H M, Iyer A. et al. Current status of the expanded GRAPES collaboration experiment at Ooty in India. Int Cosmic Ray Conf, 2008, 5: 1121–1124

    Google Scholar 

  45. Asakimori K, Burnett T H, Cherry M L, et al. Cosmic-ray proton and helium spectra: results from the JACEE experiment. Astrophys J, 1998, 502: 278

    Article  ADS  Google Scholar 

  46. Apanasenko A V, Sukhadolskaya V A, Derbina V A, et al. Composition and energy spectra of cosmic-ray primaries in the energy range 1013–1015 eV/particle observed by Japanese-Russian joint balloon experiment. Astropart Phys, 2001, 16: 13–46

    Article  ADS  Google Scholar 

  47. Ivanenko I P, Shestoperov V Y, Chikova L O, et al. Energy spectra of Cosmic Rays above 2 TeV as measured by the ’sOKOL’ apparatus. Int Cosmic Ray Conf, 1993, 2: 17

    Google Scholar 

  48. Zatsepin V I, Zamchalova E A, Varkovitskaya A Y, et al. Energy spectra of primary protons and other nuclei in energy region 10–100 TeV/nucleus. Int Cosmic Ray Conf, 1993, 2: 13

    Google Scholar 

  49. Boezio M, Bonvicini V, Schiavon P, et al. The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment. Astropart Phys, 2003, 19: 583–604

    Article  ADS  Google Scholar 

  50. Mueller D, Swordy S P, Meyer P, et al. Energy spectra and composition of primary cosmic rays. Astrophys J, 1991, 374: 356–365

    Article  ADS  Google Scholar 

  51. Swordy P S, Barwick S W, Beatty J J, et al. The relative fluxes of protons and helium nuclei up to 100 GeV/n. Int Cosmic Ray Conf, 1995, 2: 652

    Google Scholar 

  52. Navarra G. Study of cosmic ray primaries between 1012 and 1016 eV from EAS-TOP. Int Cosmic Ray Conf, 2003, 1: 147

    ADS  Google Scholar 

  53. Nagano M, Hara T, Hatano Y, et al. Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV. J Phys G-Nucl Phys, 1984, 10: 1295–1310

    Article  ADS  Google Scholar 

  54. Ichimura M, Kogawa M, Kuramata S, et al. Observation of heavy cosmic-ray primaries over the wide energy range from ∼100 GeV/particle to ∼100 TeV/particle: Is the celebrated “knee” actually so prominent? Phys Rev D, 1993, 48: 1949–1975

    Article  ADS  Google Scholar 

  55. Juliusson E. Charge composition and energy spectra of Cosmic-Ray nuclei at energies above 20 GeV per nucleon. Astrophys J, 1974, 191: 331–348

    Article  ADS  Google Scholar 

  56. Kamioka E, Hareyama M, Ichimura M, et al. Azimuthally controlled observation of heavy cosmic-ray primaries by means of the balloon-borne emulsion chamber. Astropart Phys, 1997, 6: 155–167

    Article  ADS  Google Scholar 

  57. Ahn H S, Allison P, Bagliesi M G, et al. Energy spectra of cosmic- ray nuclei at high energies. Astrophys J, 2009, 707: 593–693

    Article  ADS  Google Scholar 

  58. Berezinsky V, Gazizov A, Kachelrie M. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation. Phys Rev Lett, 2006, 97: 231101

    Article  ADS  Google Scholar 

  59. Korosteleva E E, Prosin V V, Kuzmichev L A, et al. Measurement of cosmic ray primary energy with the Atmospheric Cherenkov Light Technique in extensive air showers. Nucl Phys B (Proc Suppl), 2007, 165: 74–80

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Additional information

Contributed by HU HongBo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Yuan, Q., Fan, C. et al. A study on the sharp knee and fine structures of cosmic ray spectra. Sci. China Phys. Mech. Astron. 53, 842–847 (2010). https://doi.org/10.1007/s11433-010-0194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-0194-y

Keywords

Navigation