Skip to main content
Log in

Quantum secure direct communication with cluster states

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A quantum secure direct communication protocol with cluster states is proposed. Compared with the deterministic secure quantum communication protocol with the cluster state proposed by Yuan and Song (Int. J. Quant. Inform., 2009, 7: 689), this protocol can achieve higher intrinsic efficiency by using two-step transmission. The implementation of this protocol is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing, Proc IEEE Int Conf on Computers, Systems and Signal Processing, Bangalore, India. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302-1–3

    Article  ADS  Google Scholar 

  3. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  4. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315-1–042315-5

    ADS  Google Scholar 

  5. Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with single-photon two-qubit states. J Phys A-Math Gen, 2002, 35(28): 407–413

    Article  MathSciNet  ADS  Google Scholar 

  6. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902-1–4

    Article  ADS  Google Scholar 

  7. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317-1–4

    ADS  Google Scholar 

  8. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338-1–4

    ADS  Google Scholar 

  9. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74, 054302-1–4

    ADS  Google Scholar 

  10. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

    Article  ADS  Google Scholar 

  11. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305-1–4

    ADS  Google Scholar 

  12. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319-1–4

    Article  ADS  Google Scholar 

  14. Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A, 2006, 358(4): 256–258

    Article  MATH  ADS  Google Scholar 

  15. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  16. Lee H, Lim J, Yang H J. Quantum direct communication with authentication. Phys Rev A, 2006, 73: 042305-1–5

    ADS  Google Scholar 

  17. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  ADS  Google Scholar 

  18. Wang J, Zhang Q, Tang C J. Multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt Commun, 2006, 266: 732–737

    Article  ADS  Google Scholar 

  19. Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangled states. Phys Rev A, 2008, 78: 064304-1–4

    ADS  Google Scholar 

  20. Shimizu K, Imoto N. Communication channels secured from eaves-dropping via transmission of photonic Bell states. Phys Rev A, 1999, 60: 157–166

    Article  ADS  Google Scholar 

  21. Reid M D. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations. Phys Rev A, 2000, 62: 062308-1–6

    ADS  Google Scholar 

  22. Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501-1–4

    Article  ADS  Google Scholar 

  23. Shaari J S, Lucamarini M, Wahiddin M R B. Deterministic six states protocol for quantum communication. Phys Lett A, 2006, 358: 85–90

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Euro Phys J B, 2004, 41: 75–78

    Article  MathSciNet  ADS  Google Scholar 

  25. Gao T, Yan F L, Wang Z X. Quantum secure conditional direct communication via EPR pairs. Int J Mod Phys C, 2005, 16: 1293–1301

    Article  MATH  ADS  Google Scholar 

  26. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  27. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251–272

    Article  ADS  Google Scholar 

  28. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  29. Wang G Y, Fang X M, Tan X H. Quantum secure direct communication with Cluster state. Chin Phys Lett, 2006, 23: 2658–2661

    Article  ADS  Google Scholar 

  30. Gao F, Guo F Z, Wen Q Y, et al. Forcible-measurement attack on quantum secure direct communication protocol with cluster state. Chin Phys Lett, 2008, 25: 2766–2769

    Article  ADS  Google Scholar 

  31. Yuan H, Song J. An efficient deterministic secure quantum communication scheme with Cluster state. Int J Quant Inform, 2009, 7: 689–696

    Article  MATH  Google Scholar 

  32. Holevo A S, Peredachi P. Bounds for the quantity of information transmitted by a quantum communication channel. Probl Peredachi Inf, 1973, 9: 3–11

    MATH  Google Scholar 

  33. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  34. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  35. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Zhang W, Liu Y M, Wang Z Y, et al. Discriminating 16 mutually orthogonal 4-atom cluster states via cavity QED in teleporting arbitrary unknown two-atom state with a 4-atom cluster state as quantum channel. Int J Mod Phys C, 2008, 19: 741–747

    Article  MATH  ADS  Google Scholar 

  37. Tokunaga Y, Kuwashiro S, Yamamoto T, et al. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys Rev Lett, 2008, 100: 210501-1–4

    Article  ADS  Google Scholar 

  38. Wang X W, Yang G J. Generation and discrimination of a type of four-partite entangled state. Phys Rev A, 2008, 78: 024301-1–4

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuGuang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Yang, Y. & Wen, Q. Quantum secure direct communication with cluster states. Sci. China Phys. Mech. Astron. 53, 1271–1275 (2010). https://doi.org/10.1007/s11433-010-3210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-3210-3

Keywords

Navigation