Skip to main content
Log in

Variational principles and governing equations in nano-dielectrics with the flexoelectric effect

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The flexoelectric effect is very strong and coupled with large strain gradients for nanoscale dielectrics. At the nanoscale, the electrostatic force cannot be ignored. In this paper, we have established the electric enthalpy variational principle for nanosized dielectrics with the strain gradient and the polarization gradient effect, as well as the effect of the electrostatic force. The complete governing equations, which include the effect of the electrostatic force, are derived from this variational principle, and based on the principle the generalized electrostatic stress is obtained, the generalized electrostatic stress contains the Maxwell stress corresponding to the polarization and strain, and stress related to the polarization gradient and strain gradient. This work provides the basis for the analysis and computations for the electromechanical problems in nanosized dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toupin R A. The elastic dielectric. J Rational Mech Anal, 1956, 5: 849–914

    MathSciNet  Google Scholar 

  2. Eringen A C. Balance laws of micromorphic continua revisited. Int J Engng Sci, 1992, 30: 805–810

    Article  MATH  MathSciNet  Google Scholar 

  3. Shen S, Kuang Z B. An active control model of laminated piezothermoelastic plate. Int J Solids Struct, 1999: 36: 1925–1947

    Article  MATH  Google Scholar 

  4. Kuang Z B. Some problems in electrostrictive and magnetostrictive materials. Acta Mech Solida, 2007, 20: 219–227

    Google Scholar 

  5. Kuang Z B. Some variational principles in elastic dielectric and elastic magnetic materials. Eur J Mech A/Solids, 2008, 27: 504–514

    Article  MATH  MathSciNet  Google Scholar 

  6. Kuang Z B. Some variational principles in electroelastic media under finite deformation. Sci China Ser G-Phys Mech Astron, 2008, 51: 1390–1402

    Article  MATH  ADS  Google Scholar 

  7. Kuang Z B. Internal energy variational principles and governing equations in electroelastic analysis. Int J Solids Struct, 2009, 46: 902–911

    Article  MathSciNet  Google Scholar 

  8. Bursian E V, Trunov N N. Nonlocal piezoelectric effect. Fiz Tverd Tela, 1974, 16: 1187–1190

    Google Scholar 

  9. Catalan G, Sinnamon L J, Gregg J M. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J Phys Condens Matter, 2004, 16: 2253–2264

    Article  ADS  Google Scholar 

  10. Askar A, Lee P C Y, Cakmak A S. A lattice dynamics approach to the theory of elastic dielectrics with polarization gradient. Phys Rev B, 1970, 1: 3525–3537

    Article  ADS  Google Scholar 

  11. Mindlin R D. Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int J Solids Struct, 1969, 5: 1197–1208

    Article  Google Scholar 

  12. Yang J S. An Introduction to the Theory of Piezoelectricity. Boston: Kluwer Academic Publishers, 2004

    Google Scholar 

  13. Mindlin R D. Polarization gradient in elastic dielectrics. Int J Solids Struct, 1968, 4: 637–642

    Article  MATH  Google Scholar 

  14. Sahin E, Dost S. A strain-gradients theory of elastic dielectrics with spatial dispersion. Int J Engng Sci, 1988, 26: 1231–1245

    Article  Google Scholar 

  15. Cross L E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci, 2006, 41: 53–63

    Article  ADS  Google Scholar 

  16. Majdoub M S, Sharma P, Cagin T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys Rev B, 2008, 78: 121407

    Article  ADS  Google Scholar 

  17. Maranganti R, Sharma N D, Sharma P. Electromechanical coupling in nonpiezoelectric materials due to nanoscale size effects: Green’s function solutions and embedded inclusions. Phys Rev B, 2006, 74: 014110

    Article  ADS  Google Scholar 

  18. Fousek J, Cross L E, Litvin D B. Possible piezoelectric composites based on flexoelectric effect. Mater Lett, 1999, 39: 289–291

    Article  Google Scholar 

  19. Sharma N D, Maranganti R, Sharma P. On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J Mech Phys Solids, 2007, 52: 2328–2350

    Article  ADS  Google Scholar 

  20. Majdoub M S, Sharma P, Cagin T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B, 2008, 77: 125424

    Article  ADS  Google Scholar 

  21. Gao R P, Pan Z W, Wang Z L. Work function at the tips of multi-walled carbon nanotubes. Appl Phys Lett, 2001, 78: 1757

    Article  ADS  Google Scholar 

  22. Dequesnes M, Rotkin S V, Aluru N R. Parameterization of continuum theories for single wall carbon nanotube switches by molecular dynamics simulations. J Comput Electron, 2002, 1: 313–316

    Article  Google Scholar 

  23. Dequesnes M, Rotkin S V, Aluru N R. Calculation of pull-in voltages for carbon nanotube based nanoelectromechanical switches. Nanotechnology, 2002, 13: 120–131

    Article  ADS  Google Scholar 

  24. Dequesnes M, Tang Z, Aluru N R. Static and dynamic analysis of carbon nanotube-based switches. ASME J Engin Mater Tech, 2004, 126: 230–237

    Article  Google Scholar 

  25. Mindlin R D. Micro-structure in linear elasticity. Arch Rational Mech Anal, 1964,16: 51–78

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengPing Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Shen, S. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010). https://doi.org/10.1007/s11433-010-4039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4039-5

Keywords

Navigation