Skip to main content
Log in

An N/4 fixed-point duality quantum search algorithm

  • Brief Report
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Here a fixed-point duality quantum search algorithm is proposed. This algorithm uses iteratively non-unitary operations and measurements to search an unsorted database. Once the marked item is found, the algorithm stops automatically. This algorithm uses a constant non-unitary operator, and requires N/4 steps on average (N is the number of data from the database) to locate the marked state. The implementation of this algorithm in a usual quantum computer is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R P. Simulating physics with computers. Int J Theor Phys, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  2. Tseng C H, Somaroo S, Sharf Y, et al. Quantum simulation of a threebody-interaction Hamiltonian on an NMR quantum computer. Phys Rev A, 1999, 61: 012302

    Article  ADS  Google Scholar 

  3. Liu W Z, Zhang J F, Deng Z W, et al. Simulation of general three-body interactions in a nuclear magnetic resonance ensemble quantum computer. Sci China Ser G-Phys Mech Astron, 2008, 51(8): 1089–1096

    Article  MATH  ADS  Google Scholar 

  4. Zhang Y J, Xia Y J, Man Z X, et al. Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED. Sci China Ser G-Phys Mech Astron, 2009, 52(5): 700–707

    Article  ADS  Google Scholar 

  5. Liu W Z, Zhang J F, Long G L. Simulation of the four-body interaction in a nuclear magnetic resonance quantum information processor. Chin Sci Bull, 2009, 54(22): 4262–4265

    Article  Google Scholar 

  6. Shor PW. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. Piscataway, NJ: IEEE Computer Society Press, 1994. 124–134

    Chapter  Google Scholar 

  7. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing. New York: ACM, 1996. 212

    Google Scholar 

  8. Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 1997, 79: 325–328

    Article  ADS  Google Scholar 

  9. Brassard G, Hoyer P, Mosca M, et al. Quantum amplitude amplification and estimation. Arxiv: quant-ph/0005055

  10. Long G L. Grover algorithm with zero theoretical failure rate. Phys Rev A, 2001, 64: 022307–023311

    Article  ADS  Google Scholar 

  11. Brassard G, Hoyer P, Tapp A. Quantum counting. In: Proceedings of 25th ICALP of Lecture Notes in Computer Science, 1998. 1443: 820–831

    Article  MathSciNet  Google Scholar 

  12. Benioff P. Quantum computation and information. In: Washington DC AMS Series on Contemporary Mathematics 2000, 2000. 305: 1

    MathSciNet  Google Scholar 

  13. Toyama F M, van Dijk W, Nogami Y, et al. Multiphase matching in the Grover algorithm. Phys Rev A, 2008, 77: 042324–042332

    Article  ADS  Google Scholar 

  14. Mizel A. Critically damped quantum search. Phys Rev Lett, 2009, 102: 150501–150505

    Article  ADS  Google Scholar 

  15. Yan H Y. A New Searching Problem solved by quantum computers. Chin Phys Lett, 2002, 19(4): 460–462

    Article  ADS  Google Scholar 

  16. Zhong P C, Bao W S. Research on quantum searching algorithms based on phase shifts. Chin Phys Lett, 2008, 25: 2774–2777

    Article  ADS  Google Scholar 

  17. Zhong P C, Bao W S. Quantum mechanical meet-in-the-middle search algorithm for Triple-DES. Chin Sci Bull, 2010, 55(3): 321–325

    Article  Google Scholar 

  18. Hao L, Li J L, Long G L. Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci China Phys Mech Astron, 2010, 53(3): 491–495

    Article  ADS  Google Scholar 

  19. Grover L K. Fixed-point quantum search. Phys Rev Lett, 2005, 95: 150501–150505

    Article  ADS  Google Scholar 

  20. Tulsi T, Grover L K, Patel A. A new algorithm for fixed point quantum search. Quantum Inform Comput, 2006, 6: 483–494; arXiv: quantph/0505007

    MATH  MathSciNet  Google Scholar 

  21. Li D, Chen J P, Li X, et al. Performance of equal phase-shift search for one iteration. Eur Phys J D, 2007, 45: 335–340

    Article  ADS  Google Scholar 

  22. Hoyer P. Arbitrary phases in quantum amplitude amplification. Phys Rev A, 2000, 62: 052304–052309

    Article  ADS  Google Scholar 

  23. Biham E, Biham O, Biron D, et al. Analysis of generalized Grover quantum search algorithms using recursion equations. Phys Rev A, 2000, 63: 012310–012318

    Article  ADS  Google Scholar 

  24. Li D, Li X, Huang H, et al. Fixed-point quantum search for different phase shifts. Phys Lett A, 2007, 362: 260–264

    Article  MathSciNet  ADS  Google Scholar 

  25. Long G L, Liu Y. Duality computing in quantum computers. Commun Theor Phys, 2008, 50: 1303–1306

    Article  Google Scholar 

  26. Long G L. General quantum interference principle and duality computer. Commun Theor Phys, 2006, 45: 825–844; arXiv: quant-ph/0512120

    Article  Google Scholar 

  27. Gudder S. Mathematical theory of duality quantum computers. Quantum Inf Process, 2007, 6(1): 37–48

    Article  MATH  MathSciNet  Google Scholar 

  28. Long G L. Mathematical theory of the duality computer in the density matrix formalism. Quantum Inf Process, 2007, 6(1): 49–54

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang Y Q, Du H K, Dou Y N. Note on generalized quantum gates and quantum operations. Int J Theor Phys, 2008, 47: 2268–2278

    Article  MATH  MathSciNet  Google Scholar 

  30. Du H K, Wang Y Q, Xu J L. Applications of the generalized Luders theorem. J Math Phys, 2008, 49: 013507–013513

    Article  MathSciNet  ADS  Google Scholar 

  31. Long G L, Liu Y, Wang C. Allowable generalized quantum gates. Commun Theor Phys, 2009, 51: 65–67

    Article  MATH  Google Scholar 

  32. Zou X F, Qiu D W, Wu L H, et al. On mathematical theory of the duality computers. Quantum Inf Process, 2009, 8: 37–50

    Article  MathSciNet  Google Scholar 

  33. Du H K, Dou Y N. A spectral characterization for generalized quantum gates. J Math Phys, 2009, 50: 032101–032107

    Article  MathSciNet  ADS  Google Scholar 

  34. Chen Z L, Cao H X. A note on the extreme points of positive quantum operations. Int J Theor Phys, 2009, 48: 1669–1671

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhang Y, Li L, Cao H X. Realization of allowable generalized quantum gates. Sci China Phys Mech Astron, doi: 10.1007/s11433-010-4078-y

  36. Cao H X, Li L, Chen Z L, et al. Restricted allowable generalized quantum gates. Chin Sci Bull, 2010, 55: 2122–2125

    Article  Google Scholar 

  37. Grover L K. Quantum computers can search rapidly by using almost any transformation. Phys Rev Lett, 1998, 80: 4329–4332

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiLu Long.

Additional information

Contributed by LONG GuiLu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Liu, D. & Long, G. An N/4 fixed-point duality quantum search algorithm. Sci. China Phys. Mech. Astron. 53, 1765–1768 (2010). https://doi.org/10.1007/s11433-010-4079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4079-x

Keywords

Navigation