Skip to main content
Log in

Comparison of dark energy models: A perspective from the latest observational data

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess A G, Filippenko A V, Challis P, et al. [Supernova Search Team Collaboration] Observational evidence from Supernovae for an accelerating universe and a cosmological constant. Astron J, 1998, 116: 1009–1038, arXiv: astro-ph/9805201; Perlmutter S, Aldering G, Goldhaber G, et al. [Supernova Cosmology Project Collaboration] Measurements of Θ and Λ from 42 high-redshift Supernovae. Astrophys J, 1999, 517: 565–586, arXiv: astro-ph/9812133

    Article  ADS  Google Scholar 

  2. Weinberg S. The cosmological constant problem. Rev Mod Phys, 1989, 61: 1–23; Sahni V, Starobinsky A A. The case for a positive cosmological lambda-term. Int J Mod Phys D, 2000, 9: 373–444, arXiv: astro-ph/9904398; Carroll S M. The cosmological constant. Living Rev Rel, 2001, 4: 1, arXiv: astro-ph/0004075; Peebles P J E, Ratra B. The cosmological constant and dark energy. Rev Mod Phys, 2003, 75: 559–606, arXiv: astro-ph/0207347; Padmanabhan T. Cosmological constant: The weight of the vacuum. Phys Rept, 2003, 380: 235–320, arXiv: hep-th/0212290; Copeland E J, Sami M, Tsujikawa S. Dynamics of dark energy. Int J Mod Phys D, 2006, 15: 1753–1935, arXiv: hep-th/0603057

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Peebles P J E, Ratra B. Cosmology with a time variable cosmological ‘constant’. Astrophys J, 1988, 325: L17–L20; Ratra B, Peebles P J E. Cosmological consequences of a rolling homogeneous scalar field. Phys Rev D, 1988, 37: 3406–3427; Wetterich C. Cosmology and the fate of Dilatation symmetry. Nucl Phys B, 1988, 302: 668–696; Frieman J A, Hill C T, Stebbins A, et al. Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys Rev Lett, 1995, 75: 2077–2080, Astro-ph/9505060; Turner M S, White M J. CDM models with a smooth component. Phys Rev D, 1997, 56: 4439–4443, astro-ph/9701138; Liddle A R, Scherrer R J. A classification of scalar field potentials with cosmological scaling solutions. Phys Rev D, 1999, 59: 023509, astro-ph/9809272; Zlatev I, Wang L M, Steinhardt P J. Quintessence, cosmic coincidence, and the cosmological constant. Phys Rev Lett, 1999, 82: 896–899, Astro-ph/9807002; Steinhardt P J, Wang L M, Zlatev I. Cosmological tracking solutions. Phys Rev D, 1999, 59: 123504, astro-ph/9812313

    Article  ADS  Google Scholar 

  4. Chevallier M, Polarski D. Accelerating universes with scaling dark matter. Int J Mod Phys D, 2001, 10: 213–224, arXiv: gr-qc/0009008; Linder E V. Exploring the expansion history of the universe. Phys Rev Lett, 2003, 90: 091301, arXiv: astro-ph/0208512

    Article  ADS  Google Scholar 

  5. Li M. A model of holographic dark energy. Phys Lett B, 2004, 603: 1–5, arXiv: hep-th/0403127

    Article  ADS  Google Scholar 

  6. Huang Q G, Li M. The holographic dark energy in a non-flat universe. J Cosmol Astropart Phys, 2004, 0408: 013, arXiv: astro-ph/0404229; Huang Q G, Li M. Anthropic principle favors the holographic dark energy. J Cosmol Astropart Phys, 2005, 0503: 001, arXiv: hep-th/0410095]; Zhang X. Statefinder diagnostic for holographic dark energy model. Int J Mod Phys D, 2005, 14: 1597–1606, arXiv: astro-ph/0504586; Gong Y G. Extended holographic dark energy. Phys Rev D, 2004, 70: 064029, arXiv: hep-th/0404030; Zhang X. Reconstructing holographic quintessence. Phys Lett B, 2007, 648: 1–7, arXiv: astro-ph/0604484; Zhang X. Dynamical vacuum energy, holographic quintom, and the reconstruction of scalar-field dark energy. Phys Rev D, 2006, 74: 103505, arXiv: astro-ph/0609699; Zhang J, Zhang X, Liu H. Holographic tachyon model. Phys Lett B, 2007, 651: 84–88, arXiv: 0706.1185[astro-ph]; Li M, Lin C, Wang Y. Some issues concerning holographic dark energy. J Cosmol Astropart Phys, 2008, 0805: 023, arXiv: 0801.1407[astro-ph]; Li M, Li X D, Lin C, et al. Holographic gas as dark energy. Commun Theor Phys, 2009, 51: 181–186, arXiv: 0811.3332[hep-th]; Wang B, Gong Y G, Abdalla E. Transition of the dark energy equation of state in an interacting holographic dark energy model. Phys Lett B, 2005, 624: 141–146, arXiv: hep-th/0506069; Zhang J, Zhang X, Liu H. Statefinder diagnosis for the interacting model of holographic dark energy. Phys Lett B, 2008, 659: 26–33, arXiv: 0705.4145[astro-ph]; Zhang J, Zhang X, Liu H. Holographic dark energy in a cyclic universe. Eur Phys J C, 2007, 52: 693–699, arXiv: 0708.3121[hep-th]; Zhang X. Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model. Phys Lett B, 2010, 683: 81–87, arXiv:0909.4940[gr-qc]; Ma Y Z, Zhang X. Possible theoretical limits on holographic quintessence from weak gravity conjecture. Phys Lett B, 2008, 661: 239–245, arXiv: 0709.1517[astro-ph]; Cui J, Zhang X. Cosmic age problem revisited in the holographic dark energy model. Phys Lett B, 2010, 690: 233–238; arXiv: 1005.3587[astro-ph.CO]; Wu X, Zhu Z H. Reconstructing f(R) theory according to holographic dark energy. Phys Lett B, 2008, 660: 293–298; arXiv: 0712.3603[astro-ph]; Wu X, Cai R G, Zhu Z H. Dynamics of holographic vacuum energy in the DGP model. Phys Rev D, 2008, 77: 043502, arXiv: 0712.3604[astro-ph]

    Article  ADS  Google Scholar 

  7. Cai R G. A dark energy model characterized by the age of the universe. Phys Lett B, 2007, 657: 228–231, arXiv:0707.4049[hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  8. Wei H, Cai R G. A new model of agegraphic dark energy. Phys Lett B, 2008, 660: 113–117, arXiv: 0708.0884[astro-ph]

    Article  ADS  Google Scholar 

  9. Wei H, Cai R G. Interacting agegraphic dark energy. Eur Phys J C, 2009, 59: 99–105, arXiv: 0707.4052[hep-th]; Neupane I P. Remarks on dynamical dark energy measured by the conformal age of the universe. Phys Rev D, 2007, 76: 123006, arXiv: 0709.3096[hep-th]; Zhang J, Zhang X, Liu H. Agegraphic dark energy as a quintessence. Eur Phys J C, 2008, 54: 303–309, arXiv: 0801.2809[astro-ph]; Kim Y W, Lee H W, Myung Y S, et al. New agegraphic dark energy model with generalized uncertainty principle. Mod Phys Lett A, 2008, 23: 3049–3055, arXiv: 0803.0574[gr-qc]; Wu J P, Ma D Z, Ling Y. Quintessence reconstruction of the new agegraphic dark energy model. Phys Lett B, 2008, 663: 152–159, arXiv:0805.0546[hep-th]; Cui J, Zhang L, Zhang J, et al. New agegraphic dark energy as a rolling tachyon. Chin Phys B, 2010, 19: 019802, arXiv: 0902.0716[astro-ph.CO]; Zhang L, Cui J, Zhang J, et al. Interacting model of new agegraphic dark energy: Cosmological evolution and statefinder diagnostic. Int J Mod Phys D, 2010, 19: 21–35, arXiv: 0911.2838[astro-ph.CO]; Liu X L, Zhang J, Zhang X. Theoretical limits on agegraphic quintessence from weak gravity conjecture. Phys Lett B, 2010, 689: 139–144, arXiv: 1005.2466[gr-qc]

    Article  ADS  Google Scholar 

  10. Gao C, Wu F Q, Chen X, et al. A holographic dark energy model from Ricci scalar curvature. Phys Rev D, 2009, 79: 043511, arXiv: 0712.1394[astro-ph]

    Article  ADS  Google Scholar 

  11. Cai R G, Hu B, Zhang Y. Holography, UV/IR relation, causal entropy bound and dark energy. Commun Theor Phys, 2009, 51: 954, arXiv: 0812.4504[hep-th]; Zhang X. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy. Phys Rev D, 2009, 79: 103509, arXiv: 0901.2262[astro-ph.CO]; Feng C J, Zhang X. Holographic Ricci dark energy in Randall-Sundrum braneworld: Avoidance of big rip and steady state future. Phys Lett B, 2009, 680: 399–403, arXiv: 0904.0045[gr-qc]; Zhang J, Zhang L, Zhang X. Sandage-Loeb test for the new agegraphic and Ricci dark energy models. Phys Lett B, 2010, 691: 11–17, arXiv: 1006.1738[astro-ph.CO]

    Article  MATH  Google Scholar 

  12. Kamenshchik A Y, Moschella U, Pasquier V. An alternative to quintessence. Phys Lett B, 2001, 511: 265–268, arXiv: gr-qc/0103004; Bilic N, Tupper G B, Viollier R D. Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas. Phys Lett B, 2002, 535: 17–21, arXiv: astro-ph/0111325

    Article  MATH  ADS  Google Scholar 

  13. Bento M C, Bertolami O, Sen A A. Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys Rev D, 2002, 66: 043507, arXiv: gr-qc/0202064

    Article  ADS  Google Scholar 

  14. Zhang X, Wu F Q, Zhang J. New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. J Cosmol Astropart Phys, 2006, 0601: 003, arXiv: astro-ph/0411221; Guo Z K, Zhang Y Z. Cosmology with a variable Chaplygin gas. Phys Lett B, 2007, 645: 326–329, arXiv: astro-ph/0506091; Benaoum H B. Accelerated universe from modified Chaplygin gas and tachyonic fluid. arXiv: hep-th/0205140; Chimento L P, Lazkoz R. Large-scale inhomogeneities in modified Chaplygin gas cosmologies. Phys Lett B, 2005, 615: 146–152, arXiv: Astro-ph/0411068; Zhu Z H. Generalized Chaplygin gas as a unified scenario of dark matter/energy: Observational constraints. Astron Astrophys, 2004, 423: 421, arXiv: astro-ph/0411039

    Article  ADS  Google Scholar 

  15. Dvali G R, Gabadadze G, Porrati M. 4D gravity on a brane in 5D Minkowski space. Phys Lett B, 2000, 485: 208–214, arXiv: hep-th/0005016

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Deffayet C. Cosmology on a brane in Minkowski bulk. Phys Lett B, 2001, 502: 199–208, arXiv: hep-th/0010186; Zhu Z H, Alcaniz J S. Accelerating universe from gravitational leakage into extra dimensions: Confrontation with SNeIa. Astrophys J, 2005, 620: 7–11, arXiv: Astro-ph/0404201; Lue A. The phenomenology of Dvali-Gabadadze-Porrati cosmologies. Phys Rept, 2006, 423: 1–48, arXiv: astro-ph/0510068; Deffayet C. Theory and phenomenology of DGP gravity. Int J Mod Phys D, 2008, 16: 2023–2033; Durrer R, Maartens R. Dark energy and modified gravity. arXiv: 0811.4132[astro-ph]

    Article  MATH  ADS  Google Scholar 

  17. Dvali G, Turner M S. Dark energy as a modification of the Friedmann equation. arXiv: astro-ph/0301510

  18. Hicken M, Michael Wood-Vasey W, Blondin S, et al. Improved dark energy constraints from 100 New CfA Supernova type Ia light curves. Astrophys J, 2009, 700: 1097–1140, arXiv: 0901.4804[astro-ph.CO]

    Article  ADS  Google Scholar 

  19. Komatsu E, Dunkley J, Hinshaw G, et al. [WMAP Collaboration] Sevenyear Wilkinson microwave anisotropy probe WMAP observations: Cosmological interpretation. arXiv: 1001.4538[astro-ph.CO]

  20. Percival WJ, Cole S, Eisenstein D J, et al. Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS. Mon Not Roy Astron Soc, 2007, 381: 1053–1066, arXiv: 0705.3323[astro-ph]

    Article  ADS  Google Scholar 

  21. Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon Not Roy Astron Soc, 2010, 401: 2148–2168, arXiv: 0907.1660[Astro-ph]

    Article  ADS  Google Scholar 

  22. Davis T M, Mörtsell E, Sollerman J, et al. Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes. Astrophys J, 2007, 666: 716–725, arXiv: Astro-ph/0701510

    Article  ADS  Google Scholar 

  23. Schwarz G. Estimating the dimension of a model. Ann Stat, 1978, 6: 461–464

    Article  MATH  Google Scholar 

  24. Akaike H. A new look at the statistical model identification. IEEE Trans Automatic Control, 1974, 19: 716–723

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Riess A G, Macri L, Casertano S, et al. A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. Astrophys J, 2009, 699: 539–563, arXiv: 0905.0695[astro-ph]

    Article  ADS  Google Scholar 

  26. Liddle A R. How many cosmological parameters? Mon Not Roy Astron Soc, 2004, 351: L49–L53, arXiv: astro-ph/0401198

    Article  ADS  Google Scholar 

  27. Godlowski W, Szydlowski M. Which cosmological model with dark energy — phantom or LambdaCDM. Phys Lett B, 2005, 623: 10–16, arXiv: astro-ph/0507322; Szydlowski M, Godlowski W. Which cosmological models — with dark energy or modified FRW dynamics? Phys Lett B, 2006, 633: 427–432, arXiv: astro-ph/0509415; Szydlowski M, Kurek A, Krawiec A. Top ten accelerating cosmological models. Phys Lett B, 2006, 642: 171–178, arXiv: astro-ph/0604327; Magueijo J, Sorkin R D. Occam’s razor meets WMAP. Mon Not Roy Astron Soc Lett, 2007, 377: L39–L43, arXiv: astro-ph/0604410; Mukherjee P, Parkinson D, Corasaniti P S, et al. Model selection as a science driver for dark energy surveys. Mon Not Roy Astron Soc, 2006, 369: 1725–1734, arXiv: Astro-ph/0512484; Biesiada M. Information-theoretic model selection applied to supernovae data. J Cosmol Astropart Phys, 2007, 0702: 003, arXiv: astro-ph/0701721

    Article  ADS  Google Scholar 

  28. Liddle A R. Information criteria for Astro-physical model selection. Mon Not Roy Astron Soc Lett, 2007, 377: L74–L78, arXiv: astro-ph/0701113

    Article  ADS  Google Scholar 

  29. Saini T D, Weller J, Bridle S L. Revealing the nature of dark energy using Bayesian evidence. Mon Not Roy Astron Soc, 2004, 348: 603–608, arXiv: astro-ph/0305526

    Article  ADS  Google Scholar 

  30. Liddle A R, Mukherjee P, Parkinson D. Present and future evidence for evolving dark energy. Phys Rev D, 2006, 74: 123506, arXiv: Astro-ph/0610126; Elgaroy O, Multamaki T. Bayesian analysis of Friedmannless cosmologies. J Cosmol Astropart Phys, 2006, 0609: 002, arXiv: astro-ph/0603053; Ma Y Z, Gong Y, Chen X. Features of holographic dark energy under the combined cosmological constraints. Eur Phys J C, 2009, 60: 303–315, arXiv: 0711.1641[astro-ph]; Trotta R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp Phys, 2008, 49: 71–104, arXiv: 0803.4089[astro-ph]; Trotta R. Applications of Bayesian model selection to cosmological parameters. Mon Not Roy Astron Soc, 2007, 378: 72–82, arXiv: astro-ph/0504022

    Article  ADS  Google Scholar 

  31. Li M, Li X D, Wang S, et al. Holographic dark energy models: A comparison from the latest observational data. J Cosmol Astropart Phys, 2009, 0906: 036, arXiv: 0904.0928[astro-ph.CO]

    Article  ADS  Google Scholar 

  32. Nesseris S, Perivolaropoulos L. Comparison of the legacy and gold SnIa dataset constraints on dark energy models. Phys Rev D, 2005, 72: 123519, arXiv: astro-ph/0511040; Perivolaropoulos L. Constraints on linear-negative potentials in quintessence and phantom models from recent supernova data. Phys Rev D, 2005, 71: 063503, arXiv: Astro-ph/0412308; Nesseris S, Perivolaropoulos L. Tension and systematics in the Gold06 SnIa dataset. J Cosmol Astropart Phys, 2007, 0702: 025, arXiv: astro-ph/0612653

    Article  ADS  Google Scholar 

  33. Okumura T, Matsubara T, Eisenstein D J, et al. Large-scale anisotropic correlation function of SDSS luminous red galaxies. Astrophys J, 2008, 676: 889–898, arXiv: 0711.3640[astro-ph]

    Article  ADS  Google Scholar 

  34. Eisenstein D J, Zehavi I, Hogg D W, et al. [SDSS Collaboration] Detection of the Baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys J, 2005, 633: 560, arXiv: astro-ph/0501171

    Article  ADS  Google Scholar 

  35. Komatsu E, Dunkley J, Nolta M R, et al. [WMAP Collaboration] Fiveyear Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys J, 2009, 180: 330–376, arXiv: 0803.0547[astro-ph]

    Article  Google Scholar 

  36. Hu W, Sugiyama N. Small scale cosmological perturbations: An analytic approach. Astrophys J, 1996, 471: 542–570, arXiv: astro-ph/9510117

    Article  ADS  Google Scholar 

  37. Bond J R, Efstathiou G, Tegmark M. Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon Not Roy Astron Soc, 1997, 291: L33–L41, arXiv: astro-ph/9702100

    ADS  Google Scholar 

  38. Zhang P, Liguori M, Bean R, et al. Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. Phys Rev Lett, 2007, 99: 141302, arXiv: 0704.1932[astro-ph]

    Article  ADS  Google Scholar 

  39. Jain B, Zhang P. Observational Tests of modified gravity. Phys Rev D, 2008, 78: 063503, arXiv: 0709.2375[astro-ph]

    Article  ADS  Google Scholar 

  40. Einstein A. Cosmological considerations in the general theory of relativ ity. Sitzungsber Preuss Akad Wiss Berlin (Math Phys), 1917: 142–152

  41. Gong Y, Cai R G, Chen Y, et al. Observational constraint on dynamical evolution of dark energy. J Cosmol Astropart Phys, 2010, 1001: 019, arXiv: 0909.0596[astro-ph.CO]

    ADS  Google Scholar 

  42. Wang Y, Mukherjee P. Observational constraints on dark energy and cosmic curvature. Phys Rev D, 2007, 76: 103533, arXiv: astro-ph/0703780

    Article  ADS  Google Scholar 

  43. Cohen A G, Kaplan D B, Nelson A E. Effective field theory, black holes, and the cosmological constant. Phys Rev Lett, 1999, 82: 4971–4974, arXiv: hep-th/9803132

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Zhang X, Wu F Q. Constraints on holographic dark energy from type Ia supernova observations. Phys Rev D, 2005, 72: 043524, arXiv: Astro-ph/0506310; Zhang X, Wu F Q. Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations. Phys Rev D, 2007, 76: 023502, arXiv: astro-ph/0701405; Li M, Li X D, Wang S, et al. Probing interaction and spatial curvature in the holographic dark energy model. J Cosmol Astropart Phys, 2009, 0912: 014, arXiv: 0910.3855[astro-ph.CO]

    Article  ADS  Google Scholar 

  45. Li M, Li X D, Wang S. Revisit of tension in recent SNIa datasets. arXiv: 0910.0717[astro-ph.CO]

  46. Wei H, Cai R G. Cosmological constraints on new agegraphic dark energy. Phys Lett B, 2008, 663: 1, arXiv: 0708.1894[astro-ph]

    Article  ADS  Google Scholar 

  47. Sollerman J, Mörtsell E, Davis T M, et al. First-Year Sloan igital Sky Survey-II (SDSS-II) Supernova results: Constraints on non-standard cosmological models. Astrophys J, 2009, 703: 1374–1385, arXiv: 0908.4276[astro-ph.CO]

    Article  ADS  Google Scholar 

  48. Kessler R, Becker A, Cinabro D, et al. First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova results: Hubble diagram and cosmological parameters. Astrophys J Suppl, 2009, 185: 32–84, arXiv: 0908.4274 [astro-ph.CO]

    Article  ADS  Google Scholar 

  49. Gong Y G, Wang B, Cai R G. Probing the cosmic acceleration from combinations of different data sets. J Cosmol Astropart Phys, 2010, 1004: 019, arXiv: 1001.0807[astro-ph.CO]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Li, X. & Zhang, X. Comparison of dark energy models: A perspective from the latest observational data. Sci. China Phys. Mech. Astron. 53, 1631–1645 (2010). https://doi.org/10.1007/s11433-010-4083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4083-1

Keywords

Navigation