Skip to main content
Log in

Trapping and diffusion behaviors of helium at vacancy in iron from first principles

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We investigate the structure, trapping, and diffusion behaviors of helium (He) at vacancy in a Fe single crystal using first-principles simulations. Vacancy with more space can provide the lower electron density region for He binding in comparison with intrinsic Fe, causing He to diffuse into the vacancy inner easily. We provide the quantitative microscopic studies related to the atomic-level thermo-kinetic trapping processes. Moreover, such physical viewpoint can be applied to other vacancy-like defects such as vacancy clusters, void and grain boundaries which can open a space with reduced electron density region to increase He binding in metals and metal alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu C C, Willaime F. Ab initio study of helium in-Fe: Dissolution, migration, and clustering with vacancies. Phys Rev B, 2005, 72: 064117

    Article  ADS  Google Scholar 

  2. Wilson W D, Bisson C L, Baskes M I. Self-trapping of helium in metals. Phys Rev B, 1981, 24: 5616–5624

    Article  ADS  Google Scholar 

  3. Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials. Fusion Eng Des, 2000, 51-52: 55–71

    Article  Google Scholar 

  4. Zhang L, Shu X L, Lu G H, et al. First-principles study of He effects in a bcc Fe grain boundary: Site preference, segregation and theoretical tensile strength. J Phys-Condens Matter, 2010, 22: 375401

    Article  ADS  Google Scholar 

  5. Zhou H-B, Jin S, Lu G-H, et al. Stress tensor: A quantitative indicator of effective volume and stability of helium in metals. Europhys Lett, 2011, 96: 66001

    Article  ADS  Google Scholar 

  6. Li X C, Shu X, Lu G H, et al. Analytical W-He and H-He interatomic potentials for a W-H-He system. J Nucl Mater, 2012, 426: 31–37

    Article  ADS  Google Scholar 

  7. Zhang L, Zhang Y, Lu G H, et al. Towards theoretical connection between tensile strength of a grain boundary and segregated impurity concentration: Helium in iron as an example. Europhys Lett, 2012, 98: 17001

    Article  ADS  Google Scholar 

  8. Zhou H B, Jin S, Lu G H, et al. Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test. Prog Nat Sci, 2011, 21: 240–245

    Article  Google Scholar 

  9. Li W Y, Zhang Y, Lu G H, et al. Stress effects on stability and diffusion of H in W: A first-principles study. Nucl Instrum Meth Phys Res B, 2011, 269: 1731–1734

    Article  ADS  Google Scholar 

  10. Li X C, Shu X, Lu G H, et al. Modified analytical interatomic potential for a W-H system with defects. J Nucl Mater, 2011, 408: 12–17

    Article  ADS  Google Scholar 

  11. Li X, Gao F, Lu G H. Molecular dynamics simulation of interaction of H with vacancy in W. Nucl Instrum Meth Phys Res Sect B, 2009, 267: 3197–3199

    Article  ADS  Google Scholar 

  12. Yang Z, Xu Q, Lu G H, et al. Study on C-W interactions by molecular dynamics simulations. Nucl Instrum Meth Phys Res Sect B, 2009, 267: 3144–3147

    Article  ADS  Google Scholar 

  13. Yang Z, Yang Y M, Lu G H, et al. Molecular dynamics simulations of atomic carbon on tungsten surface. J Nucl Mater, 2009, 390: 136–139

    Article  ADS  Google Scholar 

  14. Luo G N, Umstadter K, Lu G H, et al. Behavior of tungsten with exposure to deuterium plasmas. Nucl Instrum Meth Phys Res Sect B, 2009, 267: 3041–3045

    Article  ADS  Google Scholar 

  15. Zhou H B, Jin S, Lu G H, et al. First-principles study of carbon effects on a tungsten grain boundary: site preference, segregation and strengthening. Sci China-Phys Mech Astron, 2011, 54: 2164–2169

    Article  ADS  Google Scholar 

  16. Zhou H B, Jin S, Lu G H, et al. Anisotropic strain enhanced hydrogen solubility in bcc metals: The independence on the sign of strain. Phys Rev Lett, 2012, 109: 135502

    Article  ADS  Google Scholar 

  17. Sun L, Jin S, Lu G H, et al. Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation. J Nucl Mater, 2013, 434: 395–401

    Article  ADS  Google Scholar 

  18. Lewis M B, Farrell K. Migration behavior of helium under displacive irradiation in stainless steel, nickel, iron and zirconium. Nucl Instrum Meth Phys Res Sect B, 1986, 16: 163–170

    Article  ADS  Google Scholar 

  19. Vassen R, Trinkaus H, Jung P. Helium desorption from Fe and V by atomic diffusion and bubble migration. Phys Rev B, 1991, 44: 4206–4213

    Article  ADS  Google Scholar 

  20. Stoller R E, Odette G R. Analytical solutions for helium bubble and critical radius parameters using a hard sphere equation of state. J Nucl Mater, 1985, 131: 118–125

    Article  ADS  Google Scholar 

  21. Seletskaia T, Osetsky Y N, Stoller R E, et al. magnetic interactions influence the properties of helium defects in iron. Phys Rev Lett, 2005, 94: 046403

    Article  ADS  Google Scholar 

  22. Seletskaia T, Osetsky Y N, Stoller R E, et al. Calculation of helium defect clustering properties in iron using a multi-scale approach. J Nucl Mater, 2006, 351: 109–118

    Article  ADS  Google Scholar 

  23. Zhang Y, Deng S, Lu G H, et al. Weakening of an aluminum grain boundary induced by sulfur segregation: a first-principles computational tensile test. Phys Rev B, 2007, 75: 174101

    Article  ADS  Google Scholar 

  24. Lu G H, Zhang Y, Deng S, et al. Origin of Al intergranular embrittlement by Na and Ca segregation: Grain boundary weakening. Phys Rev B, 2006, 73: 224115

    Article  ADS  Google Scholar 

  25. Lu G H, Deng S, Wang T, et al. Theoretical tensile strength of an Al grain boundary. Phys Rev B, 2004, 69: 134106

    Article  ADS  Google Scholar 

  26. Lu G H, Cuma M, Liu F. First-principles study of strain stabilization of Ge(105) facet on Si(001). Phys Rev B, 2005, 72: 125415

    Article  ADS  Google Scholar 

  27. Lu G H, Liu F. Towards quantitative understanding of formation and stability of Ge hut island on Si(001). Phys Rev Lett, 2005, 94: 176103

    Article  ADS  Google Scholar 

  28. Li Y H, Wang W F, Zhu B. Elastic and thermodynamic properties of TiC from first-principles calculations. Sci China-Phys Mech Astron, 2011, 54: 2196–2201

    Article  ADS  Google Scholar 

  29. Gao X, Zhang Y, Shang J X. First-principles calculation of the structure and the energy of ZrO2/Al2O3 nanomultilayer. Sci China-Phys Mech Astron, 2011, 54: 1990–1999

    Article  ADS  Google Scholar 

  30. Liu Z Q, Ni J. Magnetism induced by nonmagnetic dopants in zinc-blende SiC: First-principle calculations. Sci China-Phys Mech Astron, 2010, 53: 1–10

    ADS  Google Scholar 

  31. Zhang W H, Zhang F C, Zhang Z Y, et al. A first-principles study of the size-dependent electronic properties of SiC nanotubes. Sci China-Phys Mech Astron, 2010, 53: 1333–1338

    Article  ADS  Google Scholar 

  32. Gao H G, Zhou J A, Lu M H. First principles study of CuAlO2 doping with S. Sci China-Phys Mech Astron, 2010, 53: 1261–1265

    Article  ADS  Google Scholar 

  33. Wang G W, Shao Q Y. Electronic structures of phosphorus-doped diamond films and impacts of their vacancies. Sci China-Phys Mech Astron, 2010, 53: 1248–1254

    Article  ADS  Google Scholar 

  34. Tian H, Liao Y L, Zhang C, et al. A first-principle study of the structural and electronic properties of amorphous Cu-Zr alloys. Sci China-Phys Mech Astron, 2011, 54: 249–255

    ADS  Google Scholar 

  35. Yan J L, Zhang Y J. Electronic structure and optical properties of Sn2xGa2(1-x)O3 compounds. Sci China-Phys Mech Astron, 2011, 54: 459–464

    Article  ADS  MathSciNet  Google Scholar 

  36. Xia C J, Liu D S, Liu H C. A first-principles study of dihydroazulene as a possible optical molecular switch. Sci China-Phys Mech Astron, 2011, 54: 437–441

    Article  ADS  Google Scholar 

  37. Lu Y H, Feng Y P. Electric-field control of the activity of the graphene-based catalyst. Sci China-Phys Mech Astron, 2011, 54: 804–808

    Article  ADS  Google Scholar 

  38. Li Y H, Wang W F, Zhu B, et al. Elastic and thermodynamic properties of TiC from first-principles calculations. Sci China-Phys Mech Astron, 2011, 54: 2196–2201

    Article  ADS  Google Scholar 

  39. Wei Y, Zhang Y, Lu G H, et al. A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti3Al alloy. Sci China-Phys Mech Astron, 2012, 55: 228–234

    Article  ADS  Google Scholar 

  40. Lu G H, Zhang L. Connecting microscopic structure and macroscopic mechanical properties of structural materials from first-principles. Sci China-Phys Mech Astron, 2012, 55: 2305–2315

    Article  ADS  Google Scholar 

  41. Wei Y, Zhang Y, Lu G H, et al. First-principles investigation on shear deformation of a TiAl/Ti3Al interface and effects of oxygen. Intermetallics, 2012, 22: 41–46

    Article  MATH  Google Scholar 

  42. Wei Y, Zhang Y, Lu G H, et al. Effects of transition metals in a binary-phase TiAl-Ti3Al alloy: From site occupancy, interfacial energetics to mechanical properties. Intermetallics, 2012, 31: 105–113

    Article  Google Scholar 

  43. Wei Y, Zhou H B, Lu G H, et al. Effects of O in a binary-phase TiAl-Ti3Al alloy: From site occupancy to interfacial energetics. J Phys-Condens Matter, 2011, 23: 225504

    Article  ADS  Google Scholar 

  44. Hu X L, Liu L H, Zhang Y, et al. Energy investigation of effects of O on mechanical properties of NiAl intermetallics. J Phys-Condens Matter, 2011, 23: 025501

    Article  ADS  Google Scholar 

  45. Wei Y, Zhang Y, Lu G H, et al. Site preference and elastic properties of A2-Ti3Al of with oxygen impurity: A first-principles study. Int J Mod Phys B, 2010, 24: 2749–2755

    Article  ADS  MATH  Google Scholar 

  46. Hu X L, Zhang Y, Lu G H, et al. Role of the alloying element in suppressing the negative effect of O in NiAl: Cr as an example. Scripta Mater, 2009, 61: 189–192

    Article  Google Scholar 

  47. Liu L H, Zhang Y, Hu X L, et al. Formation of a coplanar O-Al bonding cluster: The effect of O impurity on a sigma=5 NiAl grain boundary by first-principles. J Phys-Condens Matter, 2009, 21: 015002

    Article  ADS  Google Scholar 

  48. Hu X L, Zhang Y, Lu G H, et al. Bonding characteristics in a NiAl intermetallics with O impurity: A first-principles computational tensile test. J Phys-Condens Matter, 2009, 21: 025402

    Article  ADS  Google Scholar 

  49. Hu X L, Zhang Y, Lu G H, et al. Effect of O impurity on structure and mechanical properties of NiAl intermetallics: A first-principles study. Intermetallics, 2009, 17: 358–364

    Article  Google Scholar 

  50. Zhang Y, Lu G H, Hu X L, et al. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J Phys-Condens Matter, 2007, 19: 456225

    Article  ADS  Google Scholar 

  51. Bai L, Yu D, Lu G H, et al. Confining P diffusion in Si by an As-doped barrier layer. Appl Phys Lett, 2007, 91: 061926

    Article  ADS  Google Scholar 

  52. Li Huang, Lu G H, Feng Liu, et al. First-principles study of adsorption and diffusion on Ge/Si(001)-(2x8) and Ge/Si(105)-(1x2) surfaces. Surf Sci, 2007, 601: 3067–3072

    Article  ADS  Google Scholar 

  53. Lu G H, Wang Q, Liu F. First-principles calculation of interaction between interstitial O and As dopant in heavily As-doped Si. J Appl Phys, 2007, 101: 026104

    Article  ADS  Google Scholar 

  54. Zhang Y, Lu G H, Deng S, et al. First-principles study of effects of segregated Ga on an Al grain boundary. J Phys-Condens Matter, 2006, 18: 5121–5128

    Article  ADS  Google Scholar 

  55. Li Huang, Feng Liu, Lu G H, et al. Surface mobility difference between Si and Ge and its effect on growth of SiGe alloy films and islands. Phys Rev Lett, 2006, 96: 016103

    Article  ADS  Google Scholar 

  56. Yan B, Zhang P, Savage D E, et al. A novel mechanism for self-organization of semiconductor nanocrystals by selective surface faceting process. Phys Rev B, 2005, 72: 235413

    Article  ADS  Google Scholar 

  57. Liang L, Li Y L, Chen L Q, et al. A thermodynamic free energy function for potassium niobate. Appl Phys Lett, 2009, 94: 072904

    Article  ADS  Google Scholar 

  58. Liang L, Li Y L, Chen L Q, et al. Thermodynamics and ferroelectric properties of KNbO3. J Appl Phys, 2009, 106: 104118

    Article  ADS  Google Scholar 

  59. Liang L, Li Y L, Hu S Y, et al. Piezoelectric anisotropy of a KNbO3 single crystal. J Appl Phys, 2010, 108: 094111

    Article  ADS  Google Scholar 

  60. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  ADS  Google Scholar 

  61. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169

    Article  ADS  Google Scholar 

  62. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244

    Article  ADS  Google Scholar 

  63. Blochl P E. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953

    Article  ADS  Google Scholar 

  64. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  ADS  MathSciNet  Google Scholar 

  65. Kittel C. Introduction to Solid State Physics. 7th ed. New York: Wiley, 1996

    Google Scholar 

  66. Puska M J, Nieminen R M, Manninen M. Atoms embedded in an electron gas: Immersion energies. Phys Rev B, 1981, 24: 3037–3047

    Article  ADS  Google Scholar 

  67. Norskov J K. Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals. Phys Rev B, 1982, 26: 2875–2885

    Article  ADS  Google Scholar 

  68. Lu G, Kaxiras E. Hydrogen embrittlement of aluminum: The crucial role of vacancies. Phys Rev Lett, 2005, 94: 155501

    Article  ADS  Google Scholar 

  69. Tapasa K, Barashev A V, Bacon D J, et al. Computer simulation of carbon diffusion and vacancy-carbon interaction in α-iron. Acta Mater, 2007, 555: 1–11

    Article  Google Scholar 

  70. Farrell K, Maziasz P J, Lee E H, et al. Modification of radiation damage microstructure by helium. Rad Eff, 1983, 78: 277–295

    Article  Google Scholar 

  71. Fu C C, Willaime F, Ordejon P. Stability and mobility of mono- and di-interstitials in α-Fe. Phys Rev Lett, 2004, 92: 175503

    Article  ADS  Google Scholar 

  72. Martinez E, Fu C C. Cr interactions with He and vacancies in dilute Fe-Cr alloys from first principles. Phys Rev B, 2011, 84: 014203

    Article  ADS  Google Scholar 

  73. Wert C, Zener C. Interstitial atomic diffusion coefficients. Phys Rev, 1949, 76: 1169–1175

    Article  ADS  Google Scholar 

  74. Golubov S I, Stoller R E, Zinkle S J, et al. Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing. J Nucl Mater, 2007, 361: 149–159

    Article  ADS  Google Scholar 

  75. Seletskaia T, Osetsky Y N, Stoller R E, et al. First-principles theory of the energetics of He defects in bcc transition metals. Phys Rev B, 2008, 78: 134103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YueLin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Shi, W. Trapping and diffusion behaviors of helium at vacancy in iron from first principles. Sci. China Phys. Mech. Astron. 56, 1100–1106 (2013). https://doi.org/10.1007/s11433-013-5100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5100-y

Keywords

Navigation