Skip to main content
Log in

Interaction between water molecules and 3C-SiC nanocrystal surface

  • Review
  • Special Topic: Water Science
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The influence of water permeates almost all areas including biochemistry, chemistry, physics and is particularly evident in phenomena occurring at the interfaces of solid surface such as SiC nanocrystals, which are promising nanomaterials and exhibit unique surface chemical properties. In this paper, the quantum confinement effect and stability of 3C-SiC nanocrystals in aqueous solution as well as photoluminescence properties in water suspensions with different pH values are reviewed based on design and analysis of surface structures. On this basis, the significant progress of 3C-SiC nanocrystals in efficiently splitting water into usable hydrogen is summarized and the relative mechanisms are described. In addition, the water-soluble 3C-SiC quantum dots as robust and nontoxic biological probes and labels also are introduced as well as future prospects given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henderson M A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf Sci Rep, 2002, 46(1–8): 1–308

    Article  ADS  Google Scholar 

  2. Thiel P A, Madey T E. The interaction of water with solid surfaces: Fundamental aspects. Surf Sci Rep, 1987, 7(6–8): 211–385

    Article  ADS  Google Scholar 

  3. Cicero G, Galli G, Catellani A. Interaction of water molecules with SiC (001) surface. J Phys Chem B, 2004, 108: 16518–16524

    Article  Google Scholar 

  4. Yang R, Hilder T A, Chung S H, et al. First-principles study of water confined in single-walled Silicon Carbide nanotubes. J Phys Chem C, 2011, 115: 17255–17264

    Article  Google Scholar 

  5. Soares G V, Baumvol I J R, Corrêa S A, et al. Water vapor interaction with Silicon Oxide films thermally grown on 6H-SiC and on Si. Appl Phys Lett, 2009, 95: 191912

    Article  ADS  Google Scholar 

  6. Wu X L, Fan J Y, Qiu T, et al. Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys Rev Lett, 2005, 94: 026102

    Article  ADS  Google Scholar 

  7. Efros Al L, Efros A L. Interband absorption of light in a semiconductor sphere. Sov Phys Semicond, 1982, 16(7): 772–775

    Google Scholar 

  8. Brus L. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys, 1983, 79: 5566–5571

    Article  ADS  Google Scholar 

  9. Madelung O. Semiconductors: Data Handbook. 3rd ed. Berlin: Springer, 2004

    Book  Google Scholar 

  10. Fan J Y, Wu X L, Zhao P Q, et al. Stability of luminescence 3C-SiC nanocrystallites in aqueous solution. Phys Lett A, 2006, 360(2): 336–338

    Article  ADS  Google Scholar 

  11. Hirata Y, Tabata S, Idene J. Interactions in the silicion carbide-poly-acrylic acid-Yttrium on system. J Am Ceram Soc, 2003, 86(1): 5–11

    Article  Google Scholar 

  12. Zhu, X W, Tang F Q, Suzuki T S, et al. Role of the initial degree of ionization of polythylenimine in the dispersion of silicon carbide nanoparticles. J Am Ceram Soc, 2003, 86(1): 189–191

    Article  Google Scholar 

  13. Iijima M, Kamiya H. Surface modification of silicon carbide nanoparticles by azo radical initiators. J Phys Chem C, 2008, 112(31): 11786–11790

    Article  Google Scholar 

  14. Lee K H, Lee S K, Jeon K S. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing. Appl Surf Sci, 2009, 255(8): 4414–4420

    Article  ADS  Google Scholar 

  15. Cicero G, Catellani A, Galli G. Atomic control of water interaction with biocompatible surfaces: the case of SiC(001). Phys Rev Lett, 2004, 93: 016102

    Article  ADS  Google Scholar 

  16. Wu X L, Xiong S J, Zhu J, et al. Identification of surface structure on 3C-SiC nanocrystals with hydrogen and hydroxyl bonding by photoluminescence. Nano Lett, 2009, 9(12): 4053–4060

    Article  ADS  Google Scholar 

  17. Fan J Y, Wu X L, Li H X, et al. Luminescence from colloidal 3C-SiC nanocrystals in different solvents. Appl Phys Lett, 2006, 88: 041909

    Article  ADS  Google Scholar 

  18. Soukiassian P, Semond F, Douillard L, et al. Direct observation of a β-SiC(100)-c(4×2) surface reconstruction. Phys Rev Lett, 1997, 78: 907–910

    Article  ADS  Google Scholar 

  19. Semond F, Soukiassian P, Mayne A, et al. Atomic structure of the β-SiC(100)-( 3×2) surface. Phys Rev Lett, 1996, 77: 2013–2016

    Article  ADS  Google Scholar 

  20. Reboredo F A, Pizzagalli L, Galli G. Computational engineering of the stability and optical gaps of SiC quantum dots. Nano Lett, 2004, 4(5): 801–804

    Article  ADS  Google Scholar 

  21. Okamato Y. Comparative study of the density-functional theory concerning the reaction pathway of Si(100)-(2×1) with H2O molecules. Phys Rev B, 1999, 60: 10632–10635

    Article  ADS  Google Scholar 

  22. Shim H W, Kim K C, Seo Y H, et al. Anomalous photoluminescence from 3C-SiC grown on Si(111) by rapid thermal chemical vapor deposition. Appl Phys Lett, 1997, 70: 1757–1759

    Article  ADS  Google Scholar 

  23. Walter M G, Warren E L, Mckone J R, et al. Solar water splitting cells. Chem Rev, 2010, 110: 6446–6473

    Article  Google Scholar 

  24. Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization. Proc Natl Acad Sci USA. 2006, 103(43): 15729–15735

    Article  ADS  Google Scholar 

  25. Lewis N S. Light work with water. Nature, 2001, 414: 589–590

    Article  ADS  Google Scholar 

  26. Heller A. Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res, 1981, 14: 154–162

    Article  Google Scholar 

  27. Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321: 1072–1075

    Article  ADS  Google Scholar 

  28. Yeo B S, Bell A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc, 2011(14), 133: 5587–5593

    Article  Google Scholar 

  29. Li Y G, Hasin P, Wu Y Y. NixCo3−x O4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater, 2010, 22(17): 1926–1929

    Article  Google Scholar 

  30. Meyer B, Marx D, Dulub Q, et al. Partial dissociation of water leads to stable superstructures on the surface of zinc oxide. Angew Chem Int Ed, 2004, 43(48): 6641–6645

    Article  Google Scholar 

  31. Dulub O, Meyer B, Diebold U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Phys Rev Lett, 2005, 95: 136101

    Article  ADS  Google Scholar 

  32. Parkinson G S, Novotny Z, Jacobson P, et al. Room temperature water splitting at the surface of magnetite. J Am Chem Soc, 2011, 133(32): 12650–12655

    Article  Google Scholar 

  33. He C Y, Wu X L, Shen J C, et al. High-efficiency electrochemical hydrogen evolution based on surface autocatalytic effect of ultrathin 3C-SiC nanocrystals. Nano Lett, 2012, 12(3): 1545–1548

    Article  ADS  Google Scholar 

  34. Zhu J, Liu Z, Wu X L, et al. Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method. Nanotech, 2007, 18: 365603

    Article  ADS  Google Scholar 

  35. Shen X, Pantelides S T. Atomic-scale mechanism of efficient hydrogen evolution at SiC nanocrystal electrodes. J Phys Chem Lett, 2013, 4: 100–104

    Article  Google Scholar 

  36. Rashkeev S N, Fleetwood D M, Schrimpf R D, et al. Defect generation by hydrogen at the Si-SiO2 interface. Phys Rev Lett, 2001, 87: 165506

    Article  ADS  Google Scholar 

  37. Hao J Y, Wang Y Y, Tong X L, et al. Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int J Hydrogen Energy, 2012, 37: 15038–15044

    Article  Google Scholar 

  38. Ma Q B, Kaiser B, Ziegler J, et al. XPS characterization and photoelectrochemical behaviour of p-type 3C-SiC films on p-Si substrates for solar water splitting. J Phys D-Appl Phys, 2012, 45: 325101

    Article  Google Scholar 

  39. Yasuda T, Kato M, Ichimura M, et al. SiC photoelectrodes for a self-driven water-splitting cell. Appl Phys Lett, 2012, 101: 053902

    Article  ADS  Google Scholar 

  40. Fujii K, Karasawa T, Ohkawa K. Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn J Appl Phys, 2005, 44: L543–L545

    Article  ADS  Google Scholar 

  41. Akikusa J, Khan S U M. Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells. Int J Hydrogen Energy, 2002, 27: 863–870

    Article  Google Scholar 

  42. Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538–544

    Article  ADS  Google Scholar 

  43. Nie S M, Xing Y, Kim G J, et al. Nanotechnology applications in cancer. Annu Rev Biomed Eng, 2007, 9: 257–288

    Article  Google Scholar 

  44. Derfus A M, Chan W C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 2004, 4(1): 11–18

    Article  ADS  Google Scholar 

  45. Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 2005, 5(2): 331–338

    Article  ADS  Google Scholar 

  46. Li Z F, Ruckenstein E. Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett, 2004, 4(8): 1463–1467

    Article  ADS  Google Scholar 

  47. Yu S J, Kang M W, Chang H C, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc, 2005, 127(50): 17604–17605

    Article  Google Scholar 

  48. Fu C C, Lee H Y, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA, 2007, 104(3): 727–732

    Article  ADS  Google Scholar 

  49. Cao L, Wang X, Meziani M J, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc, 2007, 129(37): 11318–11319

    Article  Google Scholar 

  50. Me’linon P, Masenelli B, Tournus F, et al. Playing with carbon and silicon at the nanoscale. Nat Mater, 2007, 6: 479–490

    Article  ADS  Google Scholar 

  51. Fan J Y, Li H X, Jiang J, et al. 3C-Si nanocrystals as fluorescent biological labels. Small, 2008, 4(8): 1058–1062

    Article  Google Scholar 

  52. Schoell S J, Sachsenhauser M, Oliveros A, et al. Organic functionalization of 3C-SiC surface. ACS Appl Mater Interfaces, 2013, 5: 1393–1399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingLong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Zhang, Q. & Wu, X. Interaction between water molecules and 3C-SiC nanocrystal surface. Sci. China Phys. Mech. Astron. 57, 819–828 (2014). https://doi.org/10.1007/s11433-014-5430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5430-4

Keywords

Navigation