Skip to main content
Log in

Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs

  • Article
  • Special Topic: Quantum Information
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A two-step quantum secure direct dialogue protocol using Einstein-Podolsky-Rosen (EPR) pair block is proposed. In the protocol, the dialogue messages are encoded on series of qubits and sent through a quantum channel directly. The security of the protocol is assured by its connection to the two-step quantum secure direct communication protocol, which has been proved secure. This protocol has several advantages. It is a direct communication protocol that does not require a separate classical communication for the ciphertext. It has high capacity as two bits of secret messages can be transmitted by an EPR pair. As a dialogue protocol, the two parties can speak to each other either simultaneously or sequentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassad G. Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175–179

    Google Scholar 

  2. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Ekert A K. Quantum cryptography based on Bells theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett C H, Brassad G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cabello A. Quantum key distribution in the Holevo limit. Phys Rev Lett, 2000, 85: 5635–5638

    Article  ADS  Google Scholar 

  6. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  ADS  Google Scholar 

  7. Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315

    Article  ADS  Google Scholar 

  8. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  9. Li X H, Deng F G, Zhou H Y. Efficient quantum key distribution over a collective noise channel. Phys Rev A, 2008, 78: 022321

    Article  ADS  Google Scholar 

  10. Yan T, Yan F L. Quantum key distribution using four-level particles. Chin Sci Bull, 2011, 56: 24–28

    Article  Google Scholar 

  11. Long G L, Wang C, Li Y S, et al. Quantum secure direct communication (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 332–342

    Article  Google Scholar 

  12. Shimizu K, Imoto N. Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys Rev A, 1999, 60: 157–166

    Article  ADS  Google Scholar 

  13. Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368

    ADS  Google Scholar 

  14. Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  15. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  16. Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

    Article  ADS  Google Scholar 

  17. Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J Phys A, 2005, 38: 5761–5770

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18–21

    Article  ADS  Google Scholar 

  19. Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338

    Article  ADS  Google Scholar 

  20. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  21. Lee H, Lim J, Yang H. Quantum direct communication with authentication. Phys Rev A, 2006, 73: 042305

    Article  ADS  Google Scholar 

  22. Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A, 2006, 358: 256–258

    Article  ADS  MATH  Google Scholar 

  23. Wang J, Zhang Q, Tang C J. Quantum secure direct communication without a pre-established secure quantum channel. Int J Quantum information, 2006, 4: 925–934

    Article  MATH  Google Scholar 

  24. Cao H J, Song H S. Quantum secure direct communication with W state. Chin Phys Lett, 2006, 23: 290–292

    Article  ADS  Google Scholar 

  25. Gao T, Yan F L. Controlled quantum teleportation and secure direct communication. Chin Phys, 2005, 14: 893–897

    Article  ADS  Google Scholar 

  26. Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51: 559–566

    Article  ADS  Google Scholar 

  27. Zhang Y S, Li C F, Guo G C. Comment on “Quantum key distribution without alternative measurements” [Phys. Rev. A 61, 052312 (2000)]. Phys Rev A, 2001, 63: 036301

    Article  ADS  MathSciNet  Google Scholar 

  28. Wojcik A. Eavesdropping on the “ping-pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901

    Article  ADS  Google Scholar 

  29. Gao F, Guo F Z, Wen Q Y, et al. Comment on “Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers”. Phys Rev A, 2005, 72: 036302

    Article  ADS  MathSciNet  Google Scholar 

  30. Lo H K, Ko T M. Some attacks on quantum-based cryptographic protocols. Quantum Inf Comput, 2005, 5: 40–47

    MATH  MathSciNet  Google Scholar 

  31. Qin S J, Gao F, Wen Q Y, et al. Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys Lett A, 2006, 357: 101–103

    Article  ADS  MATH  Google Scholar 

  32. Gao F, Qin S J, Wen Q Y, et al. A simple participant attack on the Bradler-Dusek protocol. Quantum Inf Comput, 2007, 7: 329–334

    MATH  MathSciNet  Google Scholar 

  33. Zhang Z J, Liu J, Wang D, et al. Comment on “Quantum direct communication with authentication”. Phys Rev A, 2007, 75: 026301

    Article  ADS  Google Scholar 

  34. Long G L, Liu X S. Theoretically efficient high-capacity quantumkeydistribution scheme. Phys Rev A, 2002, 65: 032302

    Article  ADS  Google Scholar 

  35. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  36. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  37. Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251–272

    Article  ADS  Google Scholar 

  38. Song S Y, Wang C. Recent development in quantum communication. Chin Sci Bull, 2012, 57: 4694–4700

    Article  Google Scholar 

  39. Wang C, Deng F G, Li Y S, et al. Quantum secure direct commuication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  40. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Li X H, Zhou P, Liang Y J, et al. Quantum secure direct communication network with two-step protocol. Chin Phys Lett, 2006, 23: 1080

    Article  ADS  Google Scholar 

  42. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using mult-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  43. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

    Article  ADS  Google Scholar 

  44. Cai Q Y, Li B W. Improving the capacity of the Bostrom-Felbinger protocol. Phys Rev A, 2004, 69: 054301

    Article  ADS  Google Scholar 

  45. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  46. Cao W F, Yang Y G, Wen Q Y. Quantum secure direct communication with cluster states. Sci China-Phys Mech Astron, 2010, 53: 1271–1275

    Article  ADS  Google Scholar 

  47. Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54: 942–947

    Article  ADS  Google Scholar 

  48. Yang CW, Tsai CW, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China-Phys Mech Astron, 2011, 54: 496–501

    Article  ADS  Google Scholar 

  49. Wang T J, Li T, Du F F, et al. High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin Phys Lett, 2011, 28: 040305

    Article  ADS  Google Scholar 

  50. Lu H, Fung C H F, Ma X F, et al. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys Rev A, 2011, 84: 042344

    Article  ADS  Google Scholar 

  51. Nguyen B A. Quantum dialogue. Phys Lett A, 2006, 328: 6–10

    Article  ADS  Google Scholar 

  52. Cai Q Y. The “ping-pong” protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801

    Article  ADS  Google Scholar 

  53. Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys B, 2005, 15: 1418–1420

    Google Scholar 

  54. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22–24

    Article  ADS  Google Scholar 

  55. Shi G F, Xi X Q, Tian X L, et al. Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun, 2009, 282: 2460–2463

    Article  ADS  Google Scholar 

  56. Shi G F. Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt Commun, 2010, 283: 5275–5278

    Article  ADS  Google Scholar 

  57. Gao G. Two quantum dialogue protocols without information leakage. Opt Commun, 2010, 283: 2288–2293

    Article  ADS  Google Scholar 

  58. Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25

    Article  ADS  MATH  Google Scholar 

  59. Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trpjan horse attack. Phys Rev A, 2005, 72: 044302

    Article  ADS  Google Scholar 

  60. Deng F G, Long G L. Quantum privacy amplification for a sequence of single qubits. Commun Theor Phys, 2006, 46: 443–446

    Article  ADS  Google Scholar 

  61. Hao L, Wang C, Long G L. Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system. J Phys B-At Mol Opt Phys, 2010, 43: 125502

    Article  ADS  Google Scholar 

  62. Wen K, Long G L. One-party quantum error correcting codes or unbalanced errors: Principles and application to quantum dense coding and qutum secure direct communication. Int J Quantum Inf, 2010, 8: 697–719

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Long, G. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014). https://doi.org/10.1007/s11433-014-5461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5461-x

Keywords

Navigation