Skip to main content
Log in

Parton physics from large-momentum effective field theory

  • Letter
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Parton physics, when formulated as light-front correlations, are difficult to study non-perturbatively, despite the promise of light-front quantization. Recently an alternative approach to partons have been proposed by re-visiting original Feynman picture of a hadron moving at asymptotically large momentum. Here I formulate the approach in the language of an effective field theory for a large hadron momentum P in lattice QCD, LaMET for short. I show that using this new effective theory, parton properties, including light-front parton wave functions, can be extracted from lattice observables in a systematic expansion of 1/P, much like that the parton distributions can be extracted from the hard scattering data at momentum scales of a few GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. The CMS Collaboration. A new boson with a mass of 125 GeV observed with the CMS experiment at the Large Hadron Collider. Science, 2012, 338(6114): 1569–1575; The ATLAS Collaboration. A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider. Science, 2012, 338 (6114): 1576–1582

    Article  ADS  Google Scholar 

  2. Feynman R P. Very high-energy collisions of hadrons. Phys Rev Lett, 1969, 23: 1415–1417

    Article  ADS  Google Scholar 

  3. Mueller A H. Perturbative Quantum Chromodynamics. Singapore: World Scientific, 1989. 614 (Advanced series on directions in High Energy Physics Volume 5)

    MATH  Google Scholar 

  4. Sterman G F. An Introduction to Quantum Field Theory. Cambridge: Cambridge University Press, 1993. 572

    Book  Google Scholar 

  5. Collins J. Foundations of Perturbative QCD. Serie: Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology 32. Cambridge: Cambridge University Press, 2011

    Book  Google Scholar 

  6. Altarelli G, Parisi G. Asymptotic freedom in Parton Language. Nucl Phys B, 1977, 126: 298–318; Gribov V N, Lipatov L N. Deep inelastic e p scattering in perturbation theory. Sov J Nucl Phys, 1972, 15: 438–450 [Yad Fiz, 1972, 15: 781–807]; Dokshitzer Y L. Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov Phys JETP, 1977, 46: 641–653 [Zh Eksp Teor Fiz, 1977, 73: 1216–1240]

    Article  ADS  Google Scholar 

  7. Weinberg S. Dynamics at infinite momentum. Phys Rev, 1966, 150: 1313–1318

    Article  ADS  Google Scholar 

  8. Drell S D, Levy D J, Yan T-M. A field theoretic model for electronnucleon deep inelastic scattering. Phys Rev Lett, 1969, 22: 744–748; Drell S D, Levy D J, Yan T-M. A theory of deep inelastic leptonnucleon scattering and lepton pair annihilation processes. 1. Phys Rev, 1969, 187: 2159–2171; Drell S D, Levy D J, Yan T-M. A theory of deep inelastic lepton nucleon scattering and lepton pair annihilation processes. 2. Deep inelastic electron scattering. Phys Rev D, 1970, 1: 1035–1068

    Article  ADS  Google Scholar 

  9. Collins J C, Soper D E. Parton distribution and decay functions. Nucl Phys B, 1982, 194: 445–492

    Article  ADS  Google Scholar 

  10. Wilson K G. Confinement of quarks. Phys Rev D, 1974, 10: 2445–2459

    Article  ADS  Google Scholar 

  11. See for example, Negele J W. Understanding parton distributions from lattice QCD: Present limitations and future promise. Nucl Phys A, 2002, 711: 281–290 [hep-lat/0211022]; Hagler P, et al. [LHPC Collaboration] Nucleon generalized parton distributions from full lattice QCD. Phys Rev D, 2008, 77: 094502 [arXiv:0705.4295 [hep-lat]]; Davoudi Z, Savage M J. Restoration of rotational symmetry in the continuum limit of lattice field theories. Phys Rev D, 2012, 86: 054505 [arXiv:1204.4146 [hep-lat]]

    Article  ADS  Google Scholar 

  12. Aglietti U, Ciuchini M, Corbo G, et al. Model independent determination of the shape function for inclusive B decays and of the structure functions in DIS. Phys Lett B, 1998, 432: 411–420 [hep-ph/9804416]

    Article  ADS  Google Scholar 

  13. Liu K-F. Parton degrees of freedom from the path integral formalism. Phys Rev D, 2000, 62: 074501 [hep-ph/9910306]

    Article  ADS  Google Scholar 

  14. Detmold W, Lin C J D. Deep-inelastic scattering and the operator product expansion in lattice QCD. Phys Rev D, 2006, 73: 014501 [heplat/0507007]

    Article  ADS  Google Scholar 

  15. Ji X. Quantum field theory in light front coordinates. Comm Nucl Part Phys, 1993, 21: 123–136

    Google Scholar 

  16. Burkardt M. Light front quantization. Adv Nucl Phys, 1996, 23: 1–74 [hep-ph/9505259]

    Google Scholar 

  17. Brodsky S J, Pauli H-C, Pinsky S S. Quantum chromodynamics and other field theories on the light cone. Phys Rept, 1998, 301: 299–486 [hep-ph/9705477]

    Article  ADS  MathSciNet  Google Scholar 

  18. Dirac P A M. Forms of relativistic dynamics. Rev Mod Phys, 1949, 21: 392–399

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Ji X, Ma J-P, Yuan F. Three quark light cone amplitudes of the proton and quark orbital motion dependent observables. Nucl Phys B, 2003, 652: 383–404 [hep-ph/0210430]

    Article  ADS  Google Scholar 

  20. Ji X-D, Ma J-P, Yuan F. Classification and asymptotic scaling of hadrons’ light cone wave function amplitudes. Eur Phys J C, 2004, 33: 75–90 [hep-ph/0304107]

    Article  ADS  Google Scholar 

  21. Bardeen W A, Pearson R B, Rabinovici E. Hadron masses in quantum chromodynamics on the transverse lattice. Phys Rev D, 1980, 21: 1037; Burkardt M, Dalley S. The Relativistic bound state problem in QCD: Transverse lattice methods. Prog Part Nucl Phys, 2002, 48: 317–362 [hep-ph/0112007]; Grunewald D, Ilgenfritz E-M, Prokhvatilov E V, et al. Formulating light cone QCD on the lattice. Phys Rev D, 2008, 77: 014512 [arXiv:0711.0620 [hep-lat]]

    Article  ADS  Google Scholar 

  22. Ji X. Parton physics on a Euclidean lattice. Phys Rev Lett, 2013, 110(26): 262002 [arXiv:1305.1539 [hep-ph]]

    Article  ADS  Google Scholar 

  23. Ji X, Zhang J-H, Zhao Y. Physics of the gluon-helicity contribution to proton spin. Phys Rev Lett, 2013, 111(11): 112002 [arXiv:1304.6708 [hep-ph]]

    Article  ADS  Google Scholar 

  24. Xiong X, Ji X, Zhang J-H, et al. One-loop matching for parton distributions: Non-singlet case. arXiv:1310.7471 [hep-ph]

  25. Lin H-W, Chen J-W, Cohen S D, et al. Flavor structure of the nucleon sea from lattice QCD. arXiv:1402.1462 [hep-ph]

  26. Hatta Y, Ji X, Zhao Y. Gluon helicity delta G from a universality class of operators on a lattice. arXiv:1310.4263 [hep-ph]

  27. Manohar A V, Wise M B. Heavy Quark Physics. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, volume 10. Cambridge: Cambridge University Press, 2000. 1

    Google Scholar 

  28. Collins J C. Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion. Cambridge: Cambridge University Press, 1984. 380

    Book  MATH  Google Scholar 

  29. Ji X, Yuan F. Parton distributions in light cone gauge: Where are the final state interactions? Phys Lett B, 2002, 543: 66–72 [hepph/0206057]; Belitsky A V, Ji X, Yuan F. Final state interactions and gauge invariant parton distributions. Nucl Phys B, 2003, 656: 165–198 [hep-ph/0208038]

    Article  ADS  Google Scholar 

  30. See for example, Gao J, Guzzi M, Huston J, et al. The CT10 NNLO global analysis of QCD. arXiv:1302.6246 [hep-ph]; Lai H-L, Guzzi M, Huston J, et al. New parton distributions for collider physics. Phys Rev D, 2010, 82: 074024 [arXiv:1007.2241 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangDong Ji.

Additional information

Contributed by JI XiangDong (Associate Editor-in-Chief)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X. Parton physics from large-momentum effective field theory. Sci. China Phys. Mech. Astron. 57, 1407–1412 (2014). https://doi.org/10.1007/s11433-014-5492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5492-3

Keywords

Navigation