Skip to main content
Log in

A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems

一种不确定非线性系统动力学响应分析的三角区间方法

  • Article
  • Dynamics and Control
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper proposes a new non-intrusive trigonometric polynomial approximation interval method for the dynamic response analysis of nonlinear systems with uncertain-but-bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing approximation interval methods. We consider trigonometric approximation polynomials of three types: both cosine and sine functions, the sine function, and the cosine function. Thus, special interval arithmetic for trigonometric function without overestimation can be used to obtain interval results. The interval method using trigonometric approximation polynomials with a cosine functional form exhibits better performance than the existing Taylor interval method and Chebyshev interval method. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H H. Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration. J Sound Vib, 2004, 273: 949–968

    Article  ADS  MATH  Google Scholar 

  2. Cheng H, Sandu A. Uncertainty quantification and apportionment in air quality models using the polynomial chaos method. Environ Modell Software, 2009, 24: 917–925

    Article  Google Scholar 

  3. Astill C J, Imosseir S B, Shinozuka M. Impact loading on structures with random properties. J Struct Mech, 1972, 1: 63–77

    Article  Google Scholar 

  4. Sun T C. A finite element method for random differential equations with random coefficients. SIAM J Numer Anal, 1979, 16: 1019–1035

    Article  MATH  MathSciNet  Google Scholar 

  5. Li J, Liao S. Response analysis of stochastic parameter structures under non-stationary random excitation. Comput Mech, 2001, 27: 61–68

    Article  MATH  Google Scholar 

  6. Chen S H, Liu Z S, Zhang Z F. Random vibration analysis for large-scale structures with random parameters. Comput Struct, 1992, 43: 681–685

    Article  ADS  MATH  Google Scholar 

  7. Yakov B H, Elishakoff I. Convex Models of Uncertainty in Applied Mechanics. Amsterdam: Elsevier, 1990

    MATH  Google Scholar 

  8. Yurilev C C, Heriberto R F. Comparation between some approaches to solve fuzzy differential equations. Fuzzy Set Syst, 2009, 160: 1517–1527

    Article  Google Scholar 

  9. Nieto J J, Khastan A, Ivaz K. Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal Hybrid Syst, 2009, 3: 700–707

    Article  MATH  MathSciNet  Google Scholar 

  10. Bede B, Rudas I J, Bencsik A L. First order linear fuzzy differential equations under generalized differentiability. Inform Sci, 2007, 177: 1648–1662

    Article  MATH  MathSciNet  Google Scholar 

  11. Hanss M. The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Set Syst, 2002, 130: 277–289

    Article  MATH  MathSciNet  Google Scholar 

  12. Qiu Z, Wang X. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int J Solid Struct, 2003, 40: 5423–5439

    Article  MATH  Google Scholar 

  13. Liu N, Gao W, Song C, et al. Interval dynamic response analysis of vehicle-bridge interaction system with uncertainty. J Sound Vib, 2013, 332: 3218–3231

    Article  ADS  Google Scholar 

  14. Moore R E. Interval Analysis. Englewood Cliffs: Prentice-Hall, 1966

    MATH  Google Scholar 

  15. Jackson K R, Nedialkov N S. Some recent advances in validated methods for IVPs for ODEs. Appl Numer Math, 2002, 42: 269–284

    Article  MATH  MathSciNet  Google Scholar 

  16. Nedialkov N S, Jackson K R, Corliss G F. Validated solutions of initial value problems for ordinary differential equations. Appl Math Comput, 1999, 105: 21–68

    Article  MATH  MathSciNet  Google Scholar 

  17. Nedialkov N S. Computing Rigorous Bounds on the Solution of An Initial Value Problem for An Ordinary Differential Equation. Dissertation for the Doctoral Degree. Toronto: University of Toronto, 1999

    Google Scholar 

  18. Hoefkens J. Rigorous Numerical Analysis with High-Order Taylor Models. Dissertation for the Doctoral Degree. Michigan: Michigan State University, 2001

    Google Scholar 

  19. Makino K, Berz M. Taylor models and other validated functional inclusion methods. Int J Pure Appl Math, 2003, 4: 379–456

    MATH  MathSciNet  Google Scholar 

  20. Qiu Z, Wang X. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int J Solid Struct, 2005, 42(18): 4958–4970

    Article  MATH  MathSciNet  Google Scholar 

  21. Qiu Z, Ma L, Wang X. Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J Sound Vib, 2009, 319: 531–540

    Article  ADS  Google Scholar 

  22. Wu J, Zhao Y Q, Chen S H. An improved interval analysis method for uncertain structures. Struct Eng Mech, 2005, 20: 713–726

    Article  Google Scholar 

  23. Lin Y, Stadtherr M A. Validated solutions of initial value problems for parametric ODEs. Appl Numer Math, 2007, 57: 1145–1162

    Article  MATH  MathSciNet  Google Scholar 

  24. Wu J, Zhang Y, Chen L, et al. A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl Math Model, 2013, 37: 4578–4591

    Article  MATH  MathSciNet  Google Scholar 

  25. Jaulin L, Kieffer M, Didrit O, et al. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Berlin: Springer, 2001

    Book  Google Scholar 

  26. Moore R E. Methods and Applications of Interval Analysis. Philadelphia: SIAM, 1979

    Book  MATH  Google Scholar 

  27. Wang R H. Numerical Approximation. Beijing: Higher Education Press, 2012

    Google Scholar 

  28. Jiang E X, Zhao F G, Shu Y F. Numerical Approximation. Shanghai: Fudan University Press, 2008

    Google Scholar 

  29. Xue Z C, Yu S Z, Yuan J Y. Advanced Mathematics. Beijing: Tsinghua University Press, 2013

    Google Scholar 

  30. Gao W, Zhang N, Ji J C, et al. Dynamic analysis of vehicles with uncertainty. Proc Inst Mech Eng Part D-J Automobile Eng, 2008, 222: 657–664

    Article  Google Scholar 

  31. Sandu A, Sandu C, Ahmadian M. Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects. Multibody Sys Dyn, 2006, 15: 369–391

    Article  MathSciNet  Google Scholar 

  32. Sandu C, Sandu A, Ahmadian M. Modeling multibody systems with uncertainties. Part II: Numerical applications. Multibody Sys Dyn, 2006, 15: 241–262

    Article  MATH  MathSciNet  Google Scholar 

  33. Wu J, Luo Z, Zhang Y, et al. Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int J Numer Meth Eng, 2013, 95: 608–630

    Article  MathSciNet  Google Scholar 

  34. Wu J, Luo Z, Zhang Y, et al. An interval uncertain optimization method for vehicle suspensions using Chebyshev metamodels. Appl Math Model, 2014, 38: 3706–3723

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianShu Wang.

Additional information

Contributed by LI JunFeng (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, T. & Li, J. A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems. Sci. China Phys. Mech. Astron. 58, 1–13 (2015). https://doi.org/10.1007/s11433-014-5641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5641-8

Keywords

关键词

Navigation