Skip to main content
Log in

What kind of optical model potentials should be used for deuteron stripping reactions?

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper presents the results of a study that compares CTOM, a microscopic optical model potential (OMP), which is an optical model co-created by the China Nuclear Data Center & Tuebingen University, to CH89, which is a typical phenomenological OMP. The respective OMPs were tested by applying them to the modelling of nucleon elastic scattering and (d, p) transfer reactions involving 14C, 36S, and 58Ni targets at both low and relatively high energies. The results demonstrated that although both potentials successfully accounted for the angular distributions of both the elastic scattering and transfer cross sections, the absolute values of the transfer cross sections calculated using CTOM were approximately 25% larger than those calculated using CH89. This increased transfer cross sections allowed CTOM to produce single particle strength reduction factors for the three reactions that were consistent with those extracted from (e, e′ p) reactions as well as with more recent (p, 2p) and (p, pn) reactions. Notch tests suggested that nucleon elastic scattering and transfer reactions are sensitive to different regions of the OMP; accordingly, phenomenological OMPs, which are constrained only by elastic scattering cross sections, may not be sufficient for nucleon transfer reactions. Therefore, we suggest that microscopic OMPs, which reflect more theoretical considerations, should be preferred over phenomenological ones in calculations of direct nuclear reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Austern, Direct Nuclear Reaction Theories (Academic, New York, 1970).

    Google Scholar 

  2. D. Y. Pang, F. M. Nunes, and A. M. Mukhamedzhanov, Phys. Rev. C 75, 024601 (2007).

    ADS  Google Scholar 

  3. Z. H. Li, J. Su, B. Guo, Z. C. Li, X. X. Bai, J. C. Liu, Y. J. Li, S. Q. Yan, B. X. Wang, Y. B. Wang, G. Lian, S. Zeng, E. T. Li, Y. S. Chen, N. C. Shu, Q. W. Fan, and W. P. Liu, Sci. China-Phys. Mech. Astron. 53, 658 (2010).

    ADS  Google Scholar 

  4. D. Y. Pang, N. K. Timofeyuk, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 87, 064613 (2013), arXiv: 1306.2706.

    ADS  Google Scholar 

  5. D. Y. Pang, and A. M. Mukhamedzhanov, Phys. Rev. C 90, 044611 (2014).

    ADS  Google Scholar 

  6. A. M. Mukhamedzhanov, D. Y. Pang, C. A. Bertulani, and A. S. Kadyrov, Phys. Rev. C 90, 034604 (2014), arXiv: 1408.5641.

    ADS  Google Scholar 

  7. X. C. Du, B. Guo, Z. H. Li, D. Y. Pang, E. T. Li, and W. P. Liu, Sci. China-Phys. Mech. Astron. 58, 062001 (2015).

    Google Scholar 

  8. A. M. Mukhamedzhanov, and D. Y. Pang, Phys. Rev. C 92, 014625 (2015).

    ADS  Google Scholar 

  9. W. Jiang, Y. L. Ye, Z. H. Li, C. J. Lin, Q. T. Li, Y. C. Ge, J. L. Lou, D. X. Jiang, J. Li, Z. Y. Tian, J. Feng, B. Yang, Z. H. Yang, J. Chen, H. L. Zang, Q. Liu, P. J. Li, Z. Q. Chen, Y. Zhang, Y. Liu, X. H. Sun, J. Ma, H. M. Jia, X. X. Xu, L. Yang, N. R. Ma, and L. J. Sun, Sci. China-Phys. Mech. Astron. 60, 062011 (2017).

    ADS  Google Scholar 

  10. Z. H. Li, Y. J. Li, J. Su, S. Q. Yan, Y. B. Wang, B. Guo, D. Nan, E. T. Li, L. Gan, and W. P. Liu, Sci. China-Phys. Mech. Astron. 62, 032021 (2019).

    Google Scholar 

  11. Y. P. Xu, D. Y. Pang, X. Y. Yun, S. Kubono, C. A. Bertulani, and C. X. Yuan, Phys. Rev. C 98, 044622 (2018), arXiv: 1809.04204.

    ADS  Google Scholar 

  12. J. Chen, J. L. Lou, Y. L. Ye, Z. H. Li, D. Y. Pang, C. X. Yuan, Y. C. Ge, Q. T. Li, H. Hua, D. X. Jiang, X. F. Yang, F. R. Xu, J. C. Pei, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, Y. Zhang, G. Li, N. Aoi, E. Ideguchi, H. J. Ong, J. Lee, J. Wu, H. N. Liu, C. Wen, Y. Ayyad, K. Hatanaka, D. T. Tran, T. Yamamoto, M. Tanaka, and T. Suzuki, Phys. Rev. C 98, 014616 (2018).

    ADS  Google Scholar 

  13. R. C. Johnson, and P. J. R. Soper, Phys. Rev. C 1, 976 (1970).

    ADS  Google Scholar 

  14. R. C. Johnson, and P. C. Tandy, Nucl. Phys. A 235, 56 (1974).

    ADS  Google Scholar 

  15. D. Y. Pang, and R. S. Mackintosh, Phys. Rev. C 84, 064611 (2011).

    ADS  Google Scholar 

  16. H. J. Ong, I. Tanihata, A. Tamii, T. Myo, K. Ogata, M. Fukuda, K. Hirota, K. Ikeda, D. Ishikawa, T. Kawabata, H. Matsubara, K. Matsuta, M. Mihara, T. Naito, D. Nishimura, Y. Ogawa, H. Okamura, A. Ozawa, D. Y. Pang, H. Sakaguchi, K. Sekiguchi, T. Suzuki, M. Taniguchi, M. Takashina, H. Toki, Y. Yasuda, M. Yosoi, and J. Zenihiro, Phys. Lett. B 725, 277 (2013), arXiv: 1205.4296.

    ADS  Google Scholar 

  17. E. O. Alt, L. D. Blokhintsev, A. M. Mukhamedzhanov, and A. I. Sattarov, Phys. Rev. C 75, 054003 (2007).

    ADS  Google Scholar 

  18. A. Deltuva, Phys. Rev. C 88, 011601 (2013).

    ADS  Google Scholar 

  19. A. Deltuva, Phys. Rev. C 91, 024607 (2015), arXiv: 1502.04913.

    ADS  Google Scholar 

  20. A. Deltuva, A. Ross, E. Norvaišas, and F. M. Nunes, Phys. Rev. C 94, 044613 (2016), arXiv: 1610.04448.

    ADS  Google Scholar 

  21. A. Deltuva, D. Jurčsiukonis, and E. Norvaišsas, Phys. Lett. B 769, 202 (2017), arXiv: 1703.09289.

    ADS  Google Scholar 

  22. X. D. Liu, M. A. Famiano, W. G. Lynch, M. B. Tsang, and J. A. Tostevin, Phys. Rev. C 69, 064313 (2004).

    ADS  Google Scholar 

  23. R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig, and T. B. Clegg, Phys. Rep. 201, 57 (1991).

    ADS  Google Scholar 

  24. A. J. Koning, and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    ADS  Google Scholar 

  25. W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).

    ADS  Google Scholar 

  26. H. An, and C. Cai, Phys. Rev. C 73, 054605 (2006).

    ADS  Google Scholar 

  27. Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C 74, 044615 (2006).

    ADS  Google Scholar 

  28. D. Y. Pang, P. Roussel-Chomaz, H. Savajols, R. L. Varner, and R. Wolski, Phys. Rev. C 79, 024615 (2009).

    ADS  Google Scholar 

  29. D. Y. Pang, W. M. Dean, and A. M. Mukhamedzhanov, Phys. Rev. C 91, 024611 (2015).

    ADS  Google Scholar 

  30. X. Li, C. Liang, and C. Cai, Nucl. Phys. A 789, 103 (2007).

    ADS  Google Scholar 

  31. H. Guo, Y. Zhang, Y. Han, and Q. Shen, Phys. Rev. C 79, 064601 (2009).

    ADS  Google Scholar 

  32. C. T. Liang, X. H. Li, and C. H. Cai, J. Phys. G-Nucl. Part. Phys. 36, 085104 (2009).

    ADS  Google Scholar 

  33. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977).

    ADS  Google Scholar 

  34. D. Bonatsos, and H. Müther, Nucl. Phys. A 510, 55 (1990).

    ADS  Google Scholar 

  35. B. Q. Chen, and A. D. MacKellar, Phys. Rev. C 52, 878 (1995).

    ADS  Google Scholar 

  36. J. G. Camacho, and A. M. Moro, A Pedestrian Approach to the Theory of Transfer Reactions: Application to Weakly-Bound and Unbound Exotic Nuclei (Berlin, Heidelberg, 2014), pp. 39–66.

  37. R. Xu, Z. Ma, E. N. E. van Dalen, and H. Müther, Phys. Rev. C 85, 034613 (2012), arXiv: 1203.3355.

    ADS  Google Scholar 

  38. R. Xu, Z. Ma, Y. Zhang, Y. Tian, E. N. E. van Dalen, and H. Müther, Phys. Rev. C 94, 034606 (2016), arXiv: 1605.07778.

    ADS  Google Scholar 

  39. L. D. Knutson, J. A. Thomson, and H. O. Meyer, Nucl. Phys. A 241, 36 (1975).

    ADS  Google Scholar 

  40. M. B. Tsang, J. Lee, and W. G. Lynch, Phys. Rev. Lett. 95, 222501 (2005).

    ADS  Google Scholar 

  41. J. Lee, J. A. Tostevin, B. A. Brown, F. Delaunay, W. G. Lynch, M. J. Saelim, and M. B. Tsang, Phys. Rev. C 73, 044608 (2006).

    ADS  Google Scholar 

  42. J. Lee, M. B. Tsang, D. Bazin, D. Coupland, V. Henzl, D. Henzlova, M. Kilburn, W. G. Lynch, A. M. Rogers, A. Sanetullaev, A. Signoracci, Z. Y. Sun, M. Youngs, K. Y. Chae, R. J. Charity, H. K. Cheung, M. Famiano, S. Hudan, P. OMalley, W. A. Peters, K. Schmitt, D. Shapira, and L. G. Sobotka, Phys. Rev. Lett. 104, 112701 (2010), arXiv: 0911.4857.

    ADS  Google Scholar 

  43. J. Chen, J. L. Lou, Y. L. Ye, Z. H. Li, D. Y. Pang, C. X. Yuan, Y. C. Ge, Q. T. Li, H. Hua, D. X. Jiang, X. F. Yang, F. R. Xu, J. C. Pei, J. Li, W. Jiang, Y. L. Sun, H. L. Zang, Y. Zhang, N. Aoi, E. Ideguchi, H. J. Ong, J. Lee, J. Wu, H. N. Liu, C. Wen, Y. Ayyad, K. Hatanaka, D. T. Tran, T. Yamamoto, M. Tanaka, and T. Suzuki, Phys. Lett. B 781, 412 (2018), arXiv: 1805.06074.

    ADS  Google Scholar 

  44. N. K. Timofeyuk, and R. C. Johnson, Phys. Rev. Lett. 110, 112501 (2013).

    ADS  Google Scholar 

  45. A. Gade, P. Adrich, D. Bazin, M. D. Bowen, B. A. Brown, C. M. Campbell, J. M. Cook, T. Glasmacher, P. G. Hansen, K. Hosier, S. McDaniel, D. McGlinchery, A. Obertelli, K. Siwek, L. A. Riley, J. A. Tostevin, and D. Weisshaar, Phys. Rev. C 77, 044306 (2008).

    ADS  Google Scholar 

  46. J. A. Tostevin, and A. Gade, Phys. Rev. C 90, 057602 (2014), arXiv: 1409.6576.

    ADS  Google Scholar 

  47. B. Alex Brown, Phys. Rev. C 58, 220 (1998).

    ADS  Google Scholar 

  48. A. Gade, D. Bazin, B. A. Brown, C. M. Campbell, J. A. Church, D. C. Dinca, J. Enders, T. Glasmacher, P. G. Hansen, Z. Hu, K. W. Kemper, W. F. Mueller, H. Olliver, B. C. Perry, L. A. Riley, B. T. Roeder, B. M. Sherrill, J. R. Terry, J. A. Tostevin, and K. L. Yurkewicz, Phys. Rev. Lett. 93, 042501 (2004).

    ADS  Google Scholar 

  49. C. Wen, Y. P. Xu, D. Y. Pang, and Y. L. Ye, Chin. Phys. C 41, 054104 (2017).

    ADS  Google Scholar 

  50. C. Yuan, T. Suzuki, T. Otsuka, F. Xu, and N. Tsunoda, Phys. Rev. C 85, 064324 (2012), arXiv: 1209.5587.

    ADS  Google Scholar 

  51. Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. C 60, 054315 (1999).

    ADS  Google Scholar 

  52. M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, Phys. Rev. C 80, 064323 (2009).

    ADS  Google Scholar 

  53. J. Lee, M. B. Tsang, and W. G. Lynch, arXiv: nucl-ex/0511024.

  54. F. M. Nunes, and A. Deltuva, Phys. Rev. C 84, 034607 (2011), arXiv: 1108.2519.

    ADS  Google Scholar 

  55. M. Gómez-Ramos, and A. M. Moro, Phys. Lett. B 785, 511 (2018), arXiv: 1808.09342.

    ADS  Google Scholar 

  56. L. Atar, S. Paschalis, C. Barbieri, C. A. Bertulani, P. Díaz Fernández, M. Holl, M. A. Najafi, V. Panin, H. Alvarez-Pol, T. Aumann, V. Avdeichikov, S. Beceiro-Novo, D. Bemmerer, J. Benlliure, J. M. Boillos, K. Boretzky, M. J. G. Borge, M. Caamaño, C. Caesar, E. Casarejos, W. Catford, J. Cederkall, M. Chartier, L. Chulkov, D. Cortina-Gil, E. Cravo, R. Crespo, I. Dillmann, Z. Elekes, J. Enders, O. Ershova, A. Estrade, F. Farinon, L. M. Fraile, M. Freer, D. Galaviz Redondo, H. Geissel, R. Gernhäuser, P. Golubev, K. Göbel, J. Hagdahl, T. Heftrich, M. Heil, M. Heine, A. Heinz, A. Henriques, A. Hufnagel, A. Ignatov, H. T. Johansson, B. Jonson, J. Kahlbow, N. Kalantar-Nayestanaki, R. Kanungo, A. Kelic-Heil, A. Knyazev, T. Kröll, N. Kurz, M. Labiche, C. Langer, T. Le Bleis, R. Lemmon, S. Lindberg, J. Machado, J. Marganiec-Gałązka, A. Movsesyan, E. Nacher, E. Y. Nikolskii, T. Nilsson, C. Nociforo, A. Perea, M. Petri, S. Pietri, R. Plag, R. Reifarth, G. Ribeiro, C. Rigollet, D. M. Rossi, M. Röder, D. Savran, H. Scheit, H. Simon, O. Sorlin, I. Syndikus, J. T. Taylor, O. Tengblad, R. Thies, Y. Togano, M. Vandebrouck, P. Velho, V. Volkov, A. Wagner, F. Wamers, H. Weick, C. Wheldon, G. L. Wilson, J. S. Winfield, P. Woods, D. Yakorev, M. Zhukov, A. Zilges, and K. Zuber, Phys. Rev. Lett. 120, 052501 (2018).

    ADS  Google Scholar 

  57. S. Kawase, T. Uesaka, T. L. Tang, D. Beaumel, M. Dozono, T. Fukunaga, T. Fujii, N. Fukuda, A. Galindo-Uribarri, S. Hwang, N. Inabe, T. Kawabata, T. Kawahara, W. Kim, K. Kisamori, M. Kobayashi, T. Kubo, Y. Kubota, K. Kusaka, C. Lee, Y. Maeda, H. Matsubara, S. Michimasa, H. Miya, T. Noro, Y. Nozawa, A. Obertelli, K. Ogata, S. Ota, E. Padilla-Rodal, S. Sakaguchi, H. Sakai, M. Sasano, S. Shimoura, S. Stepanyan, H. Suzuki, T. Suzuki, M. Takaki, H. Takeda, A. Tamii, H. Tokieda, T. Wakasa, T. Wakui, K. Yako, J. Yasuda, Y. Yanagisawa, R. Yokoyama, K. Yoshida, K. Yoshida, and J. Zenihiro, Prog. Theor. Exp. Phys. 2018(2), 021D01 (2018).

    Google Scholar 

  58. J. W. A. den Herder, H. P. Blok, E. Jans, P. H. M. Keizer, L. Lapikaás, E. N. M. Quint, G. van der Steenhoven, and P. K. A. de Witt Huberts, Nucl. Phys. A 490, 507 (1988).

    ADS  Google Scholar 

  59. W. H. Dickhoff, and C. Barbieri, Prog. Particle Nucl. Phys. 52, 377 (2004).

    ADS  Google Scholar 

  60. V. R. Pandharipande, I. Sick, and P. K. A. W. Huberts, Rev. Mod. Phys. 69, 981 (1997).

    ADS  Google Scholar 

  61. J. G. Cramer, and R. M. DeVries, Phys. Rev. C 22, 91 (1980).

    ADS  Google Scholar 

  62. V. Raghunatha Rao, M. Sudarshan, A. Sarma, R. Singh, S. R. Banerjee, and S. N. Chintalapudi, Nuov Cim A 107, 1441 (1994).

    ADS  Google Scholar 

  63. X. F. Zhang, and D. Y. Pang, Chin. Phys. Lett. 31, 052401 (2014).

    ADS  Google Scholar 

  64. G. J. Kramer, H. P. Blok, and L. Lapikaás, Nucl. Phys. A 679, 267 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DanYang Pang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11775013, U1432247, 11775316, U1630143, and 11465005), the National Key Research and Development Program (Grant No. 2016YFA0400502), and Science Challenge Project (Grant No. TZ2018001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, X., Pang, D., Xu, Y. et al. What kind of optical model potentials should be used for deuteron stripping reactions?. Sci. China Phys. Mech. Astron. 63, 222011 (2020). https://doi.org/10.1007/s11433-019-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9389-6

En

Navigation