Skip to main content
Log in

First experimental constraints on WIMP couplings in the effective field theory framework from CDEX

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We present weakly interacting massive particles (WIMPs) search results performed using two approaches of effective field theory from the China Dark Matter Experiment (CDEX), based on the data from both CDEX-1B and CDEX-10 stages. In the nonrelativistic effective field theory approach, both time-integrated and annual modulation analyses were used to set new limits for the coupling of WIMP-nucleon effective operators at 90% confidence level (C.L.) and improve over the current bounds in the low mχregion. In the chiral effective field theory approach, data from CDEX-10 were used to set an upper limit on WIMP-pion coupling at 90% C.L. We for the first time extended the limit to the mχ < 6 GeV/c2 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tanabashi, et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  2. E. Armengaud, et al. (EDELWEISS Collaboration), J. Cosmol. Astropart. Phys. 2016(05), 019 (2016), arXiv: 1603.05120.

    Article  Google Scholar 

  3. D. S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017), arXiv: 1608.07648.

    Article  ADS  Google Scholar 

  4. C. Amole, et al. (PICO Collaboration), Phys. Rev. Lett. 118, 251301 (2017), arXiv: 1702.07666.

    Article  ADS  Google Scholar 

  5. X. Cui, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 119, 181302 (2017).

    Article  ADS  Google Scholar 

  6. P. A. Amaudruz, et al. (DEAP-3600 Collaboration), Phys. Rev. Lett. 121, 071801 (2018).

    Article  ADS  Google Scholar 

  7. K. Abe, et al. (XMASS Collaboration), Phys. Lett. B 789, 45 (2019).

    Article  ADS  Google Scholar 

  8. H. Jiang, et al. (CDEX Collaboration), Phys. Rev. Lett. 120, 241301 (2018), arXiv: 1802.09016.

    Article  ADS  Google Scholar 

  9. G. Angloher, et al. (CRESST Collaboration), Eur. Phys. J. C 76, 25 (2016), arXiv: 1509.01515.

    Article  ADS  Google Scholar 

  10. R. Agnese, et al. (SuperCDMS Collaboration), Phys. Rev. Lett. 120, 061802 (2018).

    Article  ADS  Google Scholar 

  11. P. Agnes, et al. (DarkSide Collaboration), Phys. Rev. Lett. 121, 081307 (2018).

    Article  ADS  Google Scholar 

  12. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 123, 251801 (2019), arXiv: 1907.11485.

    Article  ADS  Google Scholar 

  13. J. D. Lewin, and P. F. Smith, Astropart. Phys. 6, 87 (1996).

    Article  ADS  Google Scholar 

  14. M. T. Ressell, M. B. Aufderheide, S. D. Bloom, K. Griest, G. J. Mathews, and D. A. Resler, Phys. Rev. D 48, 5519 (1993), arXiv: hep-ph/9307228.

    Article  ADS  Google Scholar 

  15. V. I. Dimitrov, J. Engel, and S. Pittel, Phys. Rev. D 51, R291 (1995).

    Article  ADS  Google Scholar 

  16. J. J. Fan, M. Reece, and L. T. Wang, J. Cosmol. Astropart. Phys. 2010(11), 042 (2010), arXiv: 1008.1591.

    Article  Google Scholar 

  17. B. A. Dobrescu, and I. Mocioiu, J. High Energy Phys. 2006(11), 005 (2006), arXiv: hep-ph/0605342.

    Article  ADS  Google Scholar 

  18. A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, J. Cosmol. Astropart. Phys. 2013(02), 004 (2013), arXiv: 1203.3542.

    Article  Google Scholar 

  19. N. Anand, A. L. Fitzpatrick, and W. C. Haxton, Phys. Rev. C 89, 065501 (2014).

    Article  ADS  Google Scholar 

  20. E. Epelbaum, H. W. Hammer, and U. G. Meiβner, Rev. Mod. Phys. 81, 1773 (2009), arXiv: 0811.1338.

    Article  ADS  Google Scholar 

  21. R. Machleidt, and D. R. Entem, Phys. Rep. 503, 1 (2011), arXiv: 1105.2919.

    Article  ADS  Google Scholar 

  22. H. W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys. 85, 197 (2013), arXiv: 1210.4273.

    Article  ADS  Google Scholar 

  23. K. Schneck, et al. (SuperCDMS Collaboration), Phys. Rev. D 91, 092004 (2015), arXiv: 1503.03379.

    Article  ADS  Google Scholar 

  24. E. Aprile, et al. (XENON Collaboration), Phys. Rev. D 96, 042004 (2017), arXiv: 1705.02614.

    Article  ADS  Google Scholar 

  25. G. Angloher, et al. (CRESST Collaboration), Eur. Phys. J. C 79, 021303 (2019).

    Google Scholar 

  26. J. Xia, et al. (PandaX-II Collaboration), Phys. Lett. B 792, 193 (2019), arXiv: 1807.01936.

    Article  ADS  Google Scholar 

  27. D. S. Akerib, et al. (LUX Collaboration), arXiv: 2003.11141.

  28. K. J. Kang, et al. (CDEX Collaboration), Front. Phys. 8, 412 (2013), arXiv: 1303.0601.

    Article  ADS  Google Scholar 

  29. W. Zhao, et al. (CDEX Collaboration), Phys. Rev. D 88, 052004 (2013), arXiv: 1306.4135.

    Article  ADS  Google Scholar 

  30. Q. Yue, et al. (CDEX Collaboration), Phys. Rev. D 90, 091701 (2014), arXiv: 1404.4946.

    Article  ADS  Google Scholar 

  31. W. Zhao, et al. (CDEX Collaboration), Phys. Rev. D 93, 092003 (2016), arXiv: 1601.04581.

    Article  ADS  Google Scholar 

  32. L. Wang, et al. (CDEX Collaboration), Sci. China-Phys. Mech. Astron. 60, 071011 (2017).

    Article  Google Scholar 

  33. L. T. Yang, et al. (CDEX Collaboration), Chin. Phys. C 42, 023002 (2018), arXiv: 1710.06650.

    Article  ADS  Google Scholar 

  34. L. T. Yang, et al. (CDEX Collaboration), Phys. Rev. Lett. 123, 221301 (2019), arXiv: 1904.12889.

    Article  ADS  Google Scholar 

  35. Z. Z. Liu, et al. (CDEX Collaboration), Phys. Rev. Lett. 123, 161301 (2019), arXiv: 1905.00354.

    Article  ADS  Google Scholar 

  36. Z. She, et al. (CDEX Collaboration), Phys. Rev. Lett. 124, 111301 (2020), arXiv: 1910.13234.

    Article  ADS  Google Scholar 

  37. E. Aprile, et al. (XENON Collaboration), Phys. Rev. Lett. 122, 071301 (2019), arXiv: 1811.12482.

    Article  ADS  Google Scholar 

  38. M. Hoferichter, P. Klos, and A. Schwenk, Phys. Lett. B 746, 410 (2015), arXiv: 1503.04811.

    Article  ADS  Google Scholar 

  39. M. Hoferichter, P. Klos, J. Menéndez, and A. Schwenk, Phys. Rev. D 99, 055031 (2019), arXiv: 1812.05617.

    Article  ADS  Google Scholar 

  40. V. Cirigliano, M. L. Graesser, and G. Ovanesyan, J. High Energ. Phys. 2012(10), 25 (2012).

    Article  Google Scholar 

  41. V. Cirigliano, M. L. Graesser, G. Ovanesyan, and I. M. Shoemaker, Phys. Lett. B 739, 293 (2014), arXiv: 1311.5886.

    Article  ADS  Google Scholar 

  42. M. Hoferichter, P. Klos, J. Menéndez, and A. Schwenk, Phys. Rev. D 94, 063505 (2016), arXiv: 1605.08043.

    Article  ADS  Google Scholar 

  43. C. Körber, A. Nogga, and J. de Vries, Phys. Rev. C 96, 035805 (2017), arXiv: 1704.01150.

    Article  ADS  Google Scholar 

  44. M. Hoferichter, P. Klos, J. Menéndez, and A. Schwenk, Phys. Rev. Lett. 119, 181803 (2017), arXiv: 1708.02245.

    Article  ADS  Google Scholar 

  45. L. Andreoli, V. Cirigliano, S. Gandolfi, and F. Pederiva, Phys. Rev. C 99, 025501 (2019).

    Article  ADS  Google Scholar 

  46. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H. B. Yu, Phys. Rev. D 82, 116010 (2010), arXiv: 1008.1783.

    Article  ADS  Google Scholar 

  47. E. Aprile, et al. (XENON100 Collaboration), Phys. Rev. Lett. 111, 021301 (2013), arXiv: 1301.6620.

    Article  ADS  Google Scholar 

  48. H. Uchida, et al. (XMASS-I Collaboration), Prog. Theor. Exp. Phys. 2014(6), 63C01 (2014), arXiv: 1401.4737.

    Article  Google Scholar 

  49. E. Aprile, et al. (XENON Collaboration), Phys. Rev. D 94, 122001 (2016), arXiv: 1609.06154.

    Article  ADS  Google Scholar 

  50. C. Fu, et al. (PandaX-II Collaboration), Phys. Rev. Lett. 118, 071301 (2017), arXiv: 1611.06553.

    Article  ADS  Google Scholar 

  51. D. S. Akerib, et al. (LUX Collaboration), Phys. Rev. Lett. 118, 251302 (2017).

    Article  ADS  Google Scholar 

  52. J. P. Cheng, K. J. Kang, J. M. Li, J. Li, Y. J. Li, Q. Yue, Z. Zeng, Y. H. Chen, S. Y. Wu, X. D. Ji, and H. T. Wong, Annu. Rev. Nucl. Part. Sci. 67, 231 (2017), arXiv: 1801.00587.

    Article  ADS  Google Scholar 

  53. H. Jiang, et al. (CDEX Collaboration), Sci. China-Phys. Mech. Astron. 62, 031012 (2019), arXiv: 1810.08808.

    Article  Google Scholar 

  54. L. T. Yang, H. B. Li, H. T. Wong, M. Agartioglu, J. H. Chen, L. P. Jia, H. Jiang, J. Li, F. K. Lin, S. T. Lin, S. K. Liu, J. L. Ma, B. Sevda, V. Sharma, L. Singh, M. K. Singh, M. K. Singh, A. K. Soma, A. Sonay, S. W. Yang, L. Wang, Q. Wang, Q. Yue, and W. Zhao, Nucl. Instrum. Methods Phys. Res. Sect. A-Acc. Spectrom. Detect. Assoc. Equip. 886, 13 (2018).

    Article  ADS  Google Scholar 

  55. G. J. Feldman, and R. D. Cousins, Phys. Rev. D 57, 3873 (1998), arXiv: physics/9711021.

    Article  ADS  Google Scholar 

  56. C. Savage, G. Gelmini, P. Gondolo, and K. Freese, J. Cosmol. Astropart. Phys. 2009(04), 010 (2009), arXiv: 0808.3607.

    Article  ADS  Google Scholar 

  57. A. K. Soma, M. K. Singh, L. Singh, G. K. Kumar, F. K. Lin, Q. Du, H. Jiang, S. K. Liu, J. L. Ma, V. Sharma, L. Wang, Y. C. Wu, L. T. Yang, W. Zhao, M. Agartioglu, G. Asryan, Y. Y. Chang, J. H. Chen, Y. C. Chuang, M. Deniz, C. L. Hsu, Y. H. Hsu, T. R. Huang, L. P. Jia, S. Kerman, H. B. Li, J. Li, F. T. Liao, H. Y. Liao, C. W. Lin, S. T. Lin, V. Marian, X. C. Ruan, B. Sevda, Y. T. Shen, M. K. Singh, V. Singh, A. Sonay, J. Su, V. S. Subrahmanyam, C. H. Tseng, J. J. Wang, H. T. Wong, Y. Xu, S. W. Yang, C. X. Yu, Q. Yue, and M. Zeyrek, Nucl. Instrum. Meth. Phys. Res. Sect. A-Acc. Spectrom. Detect. Assoc. Equip. 836, 67 (2016).

    Article  ADS  Google Scholar 

  58. J. F. Ziegler, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interactions Mater. Atoms 219–220, 1027 (2004).

    Article  ADS  Google Scholar 

  59. S. T. Lin, et al. (TEXONO Collaboration), Phys. Rev. D 79, 061101 (2009).

    Article  ADS  Google Scholar 

  60. B. J. Scholz, A. E. Chavarria, J. I. Collar, P. Privitera, and A. E. Robinson, Phys. Rev. D 94, 122003 (2016), arXiv: 1608.03588.

    Article  ADS  Google Scholar 

  61. J. L. Ma, Q. Yue, S. T. Lin, H. T. Wong, J. W. Hu, L. P. Jia, H. Jiang, J. Li, S. K. Liu, Z. Z. Liu, H. Ma, W. Y. Tang, Y. Tian, L. Wang, Q. Wang, Y. Wang, L. T. Yang, and Z. Zeng, Sci. China-Phys. Mech. Astron. 62, 011011 (2019), arXiv: 1802.09327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Qian Yue.

Additional information

Participating as a member of TEXONO Collaboration

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402200), and the National Natural Science Foundation of China (Grant Nos. 11725522, 11675088, 11475099, and U1865205). We are grateful to YuFeng Zhou for helpful discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zeng, Z., Yue, Q. et al. First experimental constraints on WIMP couplings in the effective field theory framework from CDEX. Sci. China Phys. Mech. Astron. 64, 281011 (2021). https://doi.org/10.1007/s11433-020-1666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1666-8

Key Words

PACS number(s)

Navigation