Skip to main content
Log in

Practical decoy-state quantum secure direct communication

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum secure direct communication (QSDC) has been demonstrated in both fiber-based and free-space channels using attenuated lasers. Decoy-state QSDC by exploiting four decoy states has been proposed to address the problem of photon-number-splitting attacks caused by the use of attenuated lasers. In this study, we present an analysis of the practical aspects of decoy-state QSDC. First, we design a two-decoy-state protocol that only requires two decoy states, thereby significantly reducing experimental complexity. Second, we successfully perform full parameter optimization for a real-life QSDC system by introducing a genetic algorithm. Our simulation results show that the two-decoy-state protocol could be the best choice for developing a practical QSDC system. Furthermore, full optimization is crucial for a high-performance QSDC system. Our work serves as a major step toward the further development of practical decoy-state QSDC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).

    Article  Google Scholar 

  2. P. W. Shor, in Algorithms for quantum computation: discrete log and factoring: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1994), p. 124.

    Google Scholar 

  3. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrá, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    Article  ADS  Google Scholar 

  4. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Science 370, 1460 (2020).

    Article  ADS  Google Scholar 

  5. J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang, Nature 591, 54 (2021), arXiv: 2103.02109.

    Article  ADS  Google Scholar 

  6. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002), arXiv: quant-ph/0012056.

    Article  ADS  Google Scholar 

  7. C. Wang, Fundam. Res. 1, 91 (2021).

    Article  Google Scholar 

  8. J. Wu, Z. Lin, L. Yin, and G.-L. Long, Quantum Eng. 1, e26 (2019).

    Article  Google Scholar 

  9. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003), arXiv: quant-ph/0308173.

    Article  ADS  Google Scholar 

  10. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004), arXiv: quant-ph/0405177.

    Article  ADS  Google Scholar 

  11. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 90312 (2018).

    Article  ADS  Google Scholar 

  12. L. Yang, J. W. Wu, Z. S. Lin, L. G. Yin, and G. L. Long, Sci. China-Phys. Mech. Astron. 63, 110311 (2020).

    Article  ADS  Google Scholar 

  13. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

    Article  ADS  Google Scholar 

  14. P. H. Niu, Z. R. Zhou, Z. S. Lin, Y. B. Sheng, L. G. Yin, and G. L. Long, Sci. Bull. 63, 1345 (2018).

    Article  Google Scholar 

  15. Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Sci. China-Phys. Mech. Astron. 63, 230362 (2020), arXiv: 1805.07228.

    Article  ADS  Google Scholar 

  16. Z. Gao, T. Li, and Z. Li, Europhys. Lett. 125, 40004 (2019).

    Article  ADS  Google Scholar 

  17. Z. K. Zou, L. Zhou, W. Zhong, and Y. B. Sheng, Europhys. Lett. 131, 40005 (2020).

    Article  ADS  Google Scholar 

  18. T. Li, and G. L. Long, New J. Phys. 22, 063017 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Zhou, Y. B. Sheng, and G. L. Long, Sci. Bull. 65, 12 (2020).

    Article  Google Scholar 

  20. K. Wei, W. Zhang, Y. L. Tang, L. You, and F. Xu, Phys. Rev. A 100, 022325 (2019), arXiv: 1909.05509.

    Article  ADS  Google Scholar 

  21. F. Xu, X. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, Rev. Mod. Phys. 92, 025002 (2020), arXiv: 1903.09051.

    Article  ADS  Google Scholar 

  22. F. G. Deng, H. Y. Zhou, and G. L. Long, J. Phys. A-Math. Gen. 39, 14089 (2006), arXiv: quant-ph/0612018.

    Article  ADS  Google Scholar 

  23. F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, and H.-Y. Zhou, Chin. Phys. 16, 3553 (2007), arXiv: quant-ph/0606008.

    Article  Google Scholar 

  24. K. J. Wei, H. Q. Ma, and J. H. Yang, Opt. Express 21, 16663 (2013).

    Article  ADS  Google Scholar 

  25. Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, and X. Chen, arXiv: 2106.13509.

  26. J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, J. Opt. Soc. Am. B 36, B41 (2019).

    Article  Google Scholar 

  27. J. H. Shapiro, Z. Zhang, and F. N. C. Wong, Quantum Inf. Process. 13, 2171 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Del Santo, and B. Dakić, Phys. Rev. Lett. 120, 060503 (2018), arXiv: 1706.08144.

    Article  ADS  Google Scholar 

  29. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Light Sci. Appl. 5, e16144 (2016), arXiv: 1503.00451.

    Article  Google Scholar 

  30. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

    Article  ADS  Google Scholar 

  31. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017), arXiv: 1710.07951.

    Article  Google Scholar 

  32. R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Light Sci. Appl. 8, 22 (2019), arXiv: 1810.11806.

    Article  ADS  Google Scholar 

  33. D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, and G. L. Long, Photon. Res. 8, 1522 (2020).

    Article  Google Scholar 

  34. H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005), arXiv: quant-ph/0411004.

    Article  ADS  Google Scholar 

  35. X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005), arXiv: quant-ph/0410075.

    Article  ADS  Google Scholar 

  36. Y. F. Jiang, K. Wei, L. Huang, K. Xu, Q. C. Sun, Y. Z. Zhang, W. Zhang, H. Li, L. You, Z. Wang, H. K. Lo, F. Xu, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 123, 100503 (2019), arXiv: 1903.07862.

    Article  ADS  Google Scholar 

  37. F. Y. Lu, Z. Q. Yin, C. Wang, C. H. Cui, J. Teng, S. Wang, W. Chen, W. Huang, B. J. Xu, G. C. Guo, and Z. F. Han, J. Opt. Soc. Am. B 36, B92 (2019), arXiv: 1812.08388.

    Article  Google Scholar 

  38. W. Wang, and H. K. Lo, Phys. Rev. A 100, 062334 (2019), arXiv: 1812.07724.

    Article  ADS  Google Scholar 

  39. H. J. Ding, J. Y. Liu, C. M. Zhang, and Q. Wang, Quantum Inf. Process. 19, 60 (2020).

    Article  ADS  Google Scholar 

  40. D. Ma, Y. Wang, and K. Wei, Quantum Inf. Process. 19, 384 (2020).

    Article  ADS  Google Scholar 

  41. X. Ma, B. Qi, Y. Zhao, and H. K. Lo, Phys. Rev. A 72, 012326 (2005), arXiv: quant-ph/0503005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejin Wei.

Additional information

This study was supported by the National Natural Science Foundation of China (Grant Nos. 62171144, 62031024, and 11865004), and the Guangxi Science Foundation (Grant No. 2017GXNSFBA198231). We thank D. Pan, L. Yin and G.-L. Long for very helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Z., Luo, D. et al. Practical decoy-state quantum secure direct communication. Sci. China Phys. Mech. Astron. 64, 120311 (2021). https://doi.org/10.1007/s11433-021-1775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1775-4

Keywords

PACS number(s)

Navigation