Skip to main content
Log in

A superradiant maser with nitrogen-vacancy center spins

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recent experiments have demonstrated Rabi-oscillations, superradiant pulses and stimulated emission from negatively-charged nitrogen-vacancy (NV) center spins in microwave resonators. These phenomena witness the kind of collective and strong coupling which has been the prerequisite for observation of superradiant lasing in the optical frequency regime. In this article, we investigate the possibility to employ coherence, present in both the collective NV spin ensemble and the microwave field, to achieve a superradiant maser. Our calculations show that a superradiant maser with a linewidth below millihertz can be achieved with moderate kilohertz incoherent pumping of over 1014 spins at room temperature. We show that the superradiant masing prevails in the presence of inhomogeneous broadening, and we present numerical and analytical studies of the dependence of the phenomenon on the various physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Breeze, E. Salvadori, J. Sathian, N. M. N. Alford, and C. W. M. Kay, Nature 555, 493 (2018), arXiv: 1710.07726.

    Article  ADS  Google Scholar 

  2. L. Jin, M. Pfender, N. Aslam, P. Neumann, S. Yang, J. Wrachtrup, and R. B. Liu, Nat. Commun. 6, 8251 (2015), arXiv: 1509.07909.

    Article  ADS  Google Scholar 

  3. A. Angerer, K. Streltsov, T. Astner, S. Putz, H. Sumiya, S. Onoda, J. Isoya, W. J. Munro, K. Nemoto, J. Schmiedmayer, and J. Majer, Nat. Phys. 14, 1168 (2018).

    Article  Google Scholar 

  4. S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T. Nöbauer, J. Schmiedmayer, S. Rotter, and J. Majer, Nat. Phys. 10, 720 (2014), arXiv: 1404.4169.

    Article  Google Scholar 

  5. R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, and J. Majer, Phys. Rev. Lett. 107, 060502 (2011), arXiv: 1103.1045.

    Article  ADS  Google Scholar 

  6. Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J. F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105, 140502 (2010), arXiv: 1006.0251.

    Article  ADS  Google Scholar 

  7. A. Angerer, T. Astner, D. Wirtitsch, H. Sumiya, S. Onoda, J. Isoya, S. Putz, and J. Majer, Appl. Phys. Lett. 109, 033508 (2016), arXiv: 1605.05554.

    Article  ADS  Google Scholar 

  8. D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Phys. Rev. Lett. 102, 163601 (2009), arXiv: 0901.3105.

    Article  ADS  Google Scholar 

  9. D. Meiser, and M. J. Holland, Phys. Rev. A 81, 033847 (2010), arXiv: 0912.0690.

    Article  ADS  Google Scholar 

  10. M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, Sci. Adv. 2, e1601231 (2016), arXiv: 1603.05671.

    Article  ADS  Google Scholar 

  11. J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, Nature 484, 78 (2012).

    Article  ADS  Google Scholar 

  12. D. A. Tieri, M. Xu, D. Meiser, J. Cooper, and M. J. Holland, arXiv: 1702.04830.

  13. K. Debnath, Y. Zhang, and K. Mølmer, Phys. Rev. A 98, 063837 (2018), arXiv: 1809.01602.

    Article  ADS  Google Scholar 

  14. M. A. Norcia, and J. K. Thompson, Phys. Rev. X 6, 011025 (2016), arXiv: 1510.06733.

    Google Scholar 

  15. A. L. Schawlow, and C. H. Townes, Phys. Rev. 112, 1940 (1958).

    Article  ADS  Google Scholar 

  16. Y. Zhang, and K. Mølmer, Phys. Rev. A 97, 013837 (2018), arXiv: 1711.07394.

    Article  ADS  Google Scholar 

  17. Y. Zhang, and K. Mølmer, J. Phys. Chem. C 121, 15339 (2017).

    Article  Google Scholar 

  18. D. Plankensteiner, C. Hotter, and H. Ritsch, arXiv: 2105.01657.

  19. H. A. M. Leymann, A. Foerster, and J. Wiersig, Phys. Rev. B 89, 085308 (2014).

    Article  ADS  Google Scholar 

  20. A. Roth, Collective Effects and Superradiance in Atomic Ensembles, Dissertation for the Doctoral Degree (Leibniz University of Hannover, Hannover, 2018).

    Google Scholar 

  21. Y. Zhang, C. Shan, and K. Mølmer, Phys. Rev. Lett. 126, 123602 (2021), arXiv: 1902.06706.

    Article  ADS  Google Scholar 

  22. A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budker, Phys. Rev. Lett. 108, 197601 (2012), arXiv: 1112.5936.

    Article  ADS  Google Scholar 

  23. T. Astner, J. Gugler, A. Angerer, S. Wald, S. Putz, N. J. Mauser, M. Trupke, H. Sumiya, S. Onoda, J. Isoya, J. Schmiedmayer, P. Mohn, and J. Majer, Nat. Mater. 17, 313 (2018), arXiv: 1706.09798.

    Article  ADS  Google Scholar 

  24. K. Debnath, Y. Zhang, and K. Mølmer, Phys. Rev. A 100, 53821 (2019), arXiv: 1904.04877.

    Article  ADS  Google Scholar 

  25. A. Bychek, C. Hotter, D. Plankensteiner, and H. Ritsch, arXiv: 2105.11023v1.

  26. M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014), arXiv: 1307.5891.

    Article  ADS  Google Scholar 

  27. A. Shankar, J. Cooper, J. G. Bohnet, J. J. Bollinger, and M. Holland, Phys. Rev. A 95, 33423 (2017), arXiv: 1612.04421.

    Article  ADS  Google Scholar 

  28. L. Mandel, E. Wolf, and P. Meystre, Am. J. Phys. 64, 1438 (1996).

    Article  ADS  Google Scholar 

  29. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  30. J. A. Gyamfi, arXiv: 1907.07122.

  31. T. Holstein, and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    Article  ADS  Google Scholar 

  32. C. K. Andersen, and K. Mølmer, Phys. Rev. A 86, 043831 (2012), arXiv: 1207.6772.

    Article  ADS  Google Scholar 

  33. C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, and I. Aharonovich, Nat. Commun. 10, 5625 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhang, Chongxin Shan or Klaus Mølmer.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004344, and 62027816), and the Danish National Research Foundation through the Center of Excellence for Complex Quantum Systems (Grant No. DNRF156).

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhang, Y., Yang, X. et al. A superradiant maser with nitrogen-vacancy center spins. Sci. China Phys. Mech. Astron. 65, 217311 (2022). https://doi.org/10.1007/s11433-021-1780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1780-6

PACS number(s)

Navigation