Skip to main content
Log in

Machine-learning-driven on-demand design of phononic beams

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The development of phononic crystals, especially their interaction with topological insulators, allows exploration of the anomalous properties of acoustic/elastic waves for various applications. However, rapidly and inversely exploring the geometry of specific targets remains a major challenge. In this work, we show how machine learning can address this challenge by studying phononic crystal beams using two different inverse design schemes. We first develop the theory of phononic beams using the transfer matrix method. Then, we use the reinforcement learning algorithm to effectively and inversely design the structural parameters to maximize the bandgap width. Furthermore, we employ the tandem-architecture neural network to solve the training-difficulty problem caused by inconsistent data and complete the task of inverse structure design with the targeted topological properties. The two inverse-design schemes have different adaptabilities, and both are characterized by high efficiency and stability. This work provides deep insights into the combination of machine learning, topological property, and phononic crystals and offers a reliable platform for rapidly and inversely designing complex material and structure properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Hussein, M. J. Leamy, and M. Ruzzene, Appl. Mech. Rev. 66, 040802 (2014).

    Article  ADS  Google Scholar 

  2. Y. Jin, Y. Pennec, B. Bonello, H. Honarvar, L. Dobrzynski, B. Djafari-Rouhani, and M. I. Hussein, Rep. Prog. Phys. 84, 086502 (2021).

    Article  ADS  Google Scholar 

  3. M. Maldovan, Nature 503, 209 (2013).

    Article  ADS  Google Scholar 

  4. G. Ma, and P. Sheng, Sci. Adv. 2, e1501595 (2016).

  5. Y. Jin, B. Djafari-Rouhani, and D. Torrent, Nanophotonics 8, 685 (2019), arXiv: 1812.09655.

    Article  Google Scholar 

  6. S. Huang, Z. Zhou, D. Li, T. Liu, X. Wang, J. Zhu, and Y. Li, Sci. Bull. 65, 373 (2020).

    Article  Google Scholar 

  7. Y. Jin, R. Kumar, O. Poncelet, O. Mondain-Monval, and T. Brunet, Nat. Commun. 10, 143 (2019).

    Article  ADS  Google Scholar 

  8. M. I. Hussein, K. Hamza, G. M. Hulbert, R. A. Scott, and K. Saitou, Struct. Multidisc. Optim. 31, 60 (2006).

    Article  Google Scholar 

  9. P. Wang, T. N. Chen, K. P. Yu, and X. P. Wang, J. Appl. Phys. 113, 053509 (2013).

    Article  ADS  Google Scholar 

  10. M. B. Assouar, and M. Oudich, Appl. Phys. Lett. 100, 123506 (2012).

    Article  ADS  Google Scholar 

  11. Y. Wang, F. Li, Y. Wang, K. Kishimoto, and W. Huang, Acta Mech. Sin. 25, 65 (2009).

    Article  ADS  Google Scholar 

  12. Y. Jin, Y. Pennec, Y. Pan, and B. Djafari-Rouhani, J. Phys. D-Appl. Phys. 50, 035301 (2016).

    Article  ADS  Google Scholar 

  13. O. R. Bilal, and M. I. Hussein, Appl. Phys. Lett. 103, 111901 (2013), arXiv: 1305.6584.

    Article  ADS  Google Scholar 

  14. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    Article  ADS  Google Scholar 

  15. L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821 (2014), arXiv: 1408.6730.

    Article  ADS  Google Scholar 

  16. R. Chaunsali, C. W. Chen, and J. Yang, Phys. Rev. B 97, 054307 (2018).

    Article  ADS  Google Scholar 

  17. N. Lera, D. Torrent, P. San-Jose, J. Christensen, and J. V. Alvarez, Phys. Rev. B 99, 134102 (2019), arXiv: 1812.08828.

    Article  ADS  Google Scholar 

  18. D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010), arXiv: 0907.2021.

    Article  ADS  Google Scholar 

  19. P. Wang, L. Lu, and K. Bertoldi, Phys. Rev. Lett. 115, 104302 (2015), arXiv: 1504.01374.

    Article  ADS  Google Scholar 

  20. G. Ma, M. Xiao, and C. T. Chan, Nat. Rev. Phys. 1, 281 (2019).

    Article  Google Scholar 

  21. X. Zhang, M. Xiao, Y. Cheng, M. H. Lu, and J. Christensen, Commun. Phys. 1, 97 (2018), arXiv: 1807.09544.

    Article  Google Scholar 

  22. M. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. X 4, 021017 (2014), arXiv: 1401.1309.

    Google Scholar 

  23. M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, Nat. Phys. 11, 240 (2015).

    Article  Google Scholar 

  24. Q. Wang, M. Xiao, H. Liu, S. Zhu, and C. T. Chan, Phys. Rev. B 93, 041415 (2016), arXiv: 1601.06216.

    Article  ADS  Google Scholar 

  25. Z. Li, X. Fang, B. Liang, Y. Li, and J. Cheng, Phys. Rev. Appl. 14, 054028 (2020).

    Article  ADS  Google Scholar 

  26. W. Zhou, B. Wu, Z. Chen, W. Chen, C. W. Lim, and J. N. Reddy, J. Mech. Phys. Solids 137, 103824 (2020), arXiv: 2009.04749.

    Article  MathSciNet  Google Scholar 

  27. Muhammad, W. Zhou, and C. W. Lim, Int. J. Mech. Sci. 159, 359 (2019).

    Article  Google Scholar 

  28. Z. Gu, H. Gao, T. Liu, S. Liang, S. An, Y. Li, and J. Zhu, Phys. Rev. Appl. 15, 014025 (2021).

    Article  ADS  Google Scholar 

  29. Y. Jin, W. Wang, and B. Djafari-Rouhani, Int. J. Mech. Sci. 186, 105897 (2020).

    Article  Google Scholar 

  30. W. Wang, Y. Jin, W. Wang, B. Bonello, B. Djafari-Rouhani, and R. Fleury, Phys. Rev. B 101, 024101 (2020).

    Article  ADS  Google Scholar 

  31. F. Zangeneh-Nejad, and R. Fleury, Phys. Rev. Lett. 122, 014301 (2019), arXiv: 1809.05389.

    Article  ADS  Google Scholar 

  32. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Nature 529, 484 (2016).

    Article  ADS  Google Scholar 

  33. K. Noda, H. Arie, Y. Suga, and T. Ogata, Robot. Autonom. Syst. 62, 721 (2014).

    Article  Google Scholar 

  34. A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, IEEE Access 7, 19143 (2019).

    Article  Google Scholar 

  35. T. Fischer, and C. Krauss, Eur. J. Operat. Res. 270, 654 (2018).

    Article  Google Scholar 

  36. R. T. Wu, T. W. Liu, M. R. Jahanshahi, and F. Semperlotti, Struct. Multidisc. Optim. 63, 2399 (2021).

    Article  Google Scholar 

  37. C. Luo, S. Ning, Z. Liu, and Z. Zhuang, Extrem. Mech. Lett. 36, 100651 (2020).

    Article  Google Scholar 

  38. Y. Long, J. Ren, and H. Chen, Phys. Rev. Lett. 124, 185501 (2020), arXiv: 2001.02661.

    Article  ADS  Google Scholar 

  39. P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, Nat. Nanotechnol. 14, 237 (2019), arXiv: 1805.03468.

    Article  ADS  Google Scholar 

  40. Y. T. Luo, P. Q. Li, D. T. Li, Y. G. Peng, Z. G. Geng, S. H. Xie, Y. Li, A. Alù, J. Zhu, and X. F. Zhu, Research 2020, 1 (2020).

    Google Scholar 

  41. I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, Light Sci. Appl. 7, 60 (2018).

    Article  ADS  Google Scholar 

  42. F. Liu, X. Jiang, X. Wang, and L. Wang, Extrem. Mech. Lett. 41, 101002 (2020).

    Article  Google Scholar 

  43. L. He, Z. Wen, Y. Jin, D. Torrent, X. Zhuang, and T. Rabczuk, Mater. Des. 199, 109390 (2021).

    Article  Google Scholar 

  44. Y. Yuan, W. Zhou, J. Li, W. Chen, and R. Bao, J. Zhejiang Univ. Sci. A 20, 811 (2019).

    Article  Google Scholar 

  45. R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, J. Sound Vib. 333, 2759 (2014).

    Article  ADS  Google Scholar 

  46. P. F. Pai, H. Peng, and S. Jiang, Int. J. Mech. Sci. 79, 195 (2014).

    Article  Google Scholar 

  47. C. J. C. H. Watkins, and P. Dayan, Machine Learn. 8, 279 (1992).

    Google Scholar 

  48. W. S. Gao, M. Xiao, C. T. Chan, and W. Y. Tam, Opt. Lett. 40, 5259 (2015).

    Article  ADS  Google Scholar 

  49. D. Liu, Y. Tan, E. Khoram, and Z. Yu, ACS Photon. 5, 1365 (2018).

    Article  Google Scholar 

  50. W. Ma, F. Cheng, and Y. Liu, ACS Nano 12, 6326 (2018).

    Article  Google Scholar 

  51. Y. Long, J. Ren, Y. Li, and H. Chen, Appl. Phys. Lett. 114, 181105 (2019).

    Article  ADS  Google Scholar 

  52. L. Xu, M. Rahmani, Y. Ma, D. A. Smirnova, K. Z. Kamali, F. Deng, Y. K. Chiang, L. Huang, H. Zhang, S. Gould, D. N. Neshev, and A. E. Miroshnichenko, Adv. Photon. 2, 1 (2020), arXiv: 1912.10212.

    Article  Google Scholar 

  53. C. X. Liu, G. L. Yu, and G. Y. Zhao, AIP Adv. 9, 085223 (2019).

    Article  ADS  Google Scholar 

  54. Y.-P. Zhao, A Course in Rational Mechanics (Beijing, Science Press, 2020).

    Google Scholar 

  55. D. Kang, X. Wang, X. Zheng, and Y. P. Zhao, Fuel 290, 120006 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yabin Jin or Yan Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11902223), the Shanghai Pujiang Program (Grant No. 19PJ1410100), the Program for Professors of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Fundamental Research Funds for the Central Universities, and Shanghai Municipal Peak Discipline Program (Grant No. 2019010106).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Guo, H., Jin, Y. et al. Machine-learning-driven on-demand design of phononic beams. Sci. China Phys. Mech. Astron. 65, 214612 (2022). https://doi.org/10.1007/s11433-021-1787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1787-x

Navigation