Skip to main content
Log in

Ultrafast dynamics of photoexcited carriers and coherent phonons in ultrathin Bi2Te3 thermoelectric films

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The ultrafast dynamics of photoexcited carriers and coherent phonons in ultrathin Bi2Te3 thermoelectric films are studied through transient differential transmission spectroscopy. An ultralow frequency coherent optical phonon at 0.16 THz emerges, especially in ultrathin films, and it is ascribed to interlayer breathing modes. It can divide the ultrathin films into two groups which have out-of-phase vibration along the normal of a film plane, causing a destructive interference between in-plane propagating thermal waves in the two groups of quintuple layers, and thus possibly reducing the thermal conductivity of the ultrathin films. The excitation power dependence of ultrafast dynamics reveals carrier-carrier scattering dominating thermalization, which provides a microscopic understanding of the reported high electrical conductivity and anomalously high power factor of ultrathin Bi2Te3 films at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Hicks, T. C. Harman, and M. S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  ADS  Google Scholar 

  2. J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang, and X. Wang, J. Mater. Sci. 55, 12642 (2020).

    Article  ADS  Google Scholar 

  3. J. Pei, B. Cai, H. L. Zhuang, and J. F. Li, Natl. Sci. Rev. 7, 1856 (2020).

    Article  Google Scholar 

  4. T. M. Tritt, H. Böttner, and L. Chen, MRS Bull. 33, 366 (2008).

    Article  Google Scholar 

  5. T. Zhu, L. Hu, X. Zhao, and J. He, Adv. Sci. 3, 1600004 (2016).

    Article  Google Scholar 

  6. J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, Energ. Environ. Sci. 5, 5510 (2012).

    Article  Google Scholar 

  7. C. M. Jaworski, V. Kulbachinskii, and J. P. Heremans, Phys. Rev. B 80, 233201 (2009).

    Article  ADS  Google Scholar 

  8. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).

    Article  ADS  Google Scholar 

  9. Y. Pei, H. Wang, and G. J. Snyder, Adv. Mater. 24, 6125 (2012).

    Article  Google Scholar 

  10. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, Science 348, 109 (2015).

    Article  ADS  Google Scholar 

  11. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  ADS  Google Scholar 

  12. P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T. M. Tritt, M. S. Dresselhaus, and A. M. Rao, Sci. Rep. 3, 3212 (2013).

    Article  ADS  Google Scholar 

  13. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).

    Article  ADS  Google Scholar 

  14. N. K. Singh, J. Pandey, S. Acharya, and A. Soni, J. Alloys Compd. 746, 350 (2018).

    Article  Google Scholar 

  15. L. Wu, J. Yang, T. Zhang, S. Wang, P. Wei, W. Zhang, L. Chen, and J. Yang, J. Phys.-Condens. Matter 28, 085801 (2016).

    Article  ADS  Google Scholar 

  16. A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, Nat. Mater. 14, 871 (2015), arXiv: 1507.02408.

    Article  ADS  Google Scholar 

  17. J. Liang, L. Cheng, J. Zhang, H. Liu, and Z. Zhang, Nanoscale 8, 8855 (2016), arXiv: 1505.03292.

    Article  ADS  Google Scholar 

  18. Y. Xu, Z. Gan, and S. C. Zhang, Phys. Rev. Lett. 112, 226801 (2014), arXiv: 1403.3137.

    Article  ADS  Google Scholar 

  19. S. R. Boona, R. C. Myers, and J. P. Heremans, Energ. Environ. Sci. 7, 885 (2014).

    Article  Google Scholar 

  20. L. D. Hicks, and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  ADS  Google Scholar 

  21. L. D. Hicks, and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  ADS  Google Scholar 

  22. D. T. Morelli, V. Jovovic, and J. P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).

    Article  ADS  Google Scholar 

  23. S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, and G. Chen, Nat. Commun. 5, 3525 (2014).

    Article  ADS  Google Scholar 

  24. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  ADS  Google Scholar 

  25. G. J. Snyder, and E. S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  26. M. Ahmad, K. Agarwal, and B. R. Mehta, J. Appl. Phys. 128, 035108 (2020).

    Article  ADS  Google Scholar 

  27. C. Chiritescu, D. G. Cahill, C. Heideman, Q. Lin, C. Mortensen, N. T. Nguyen, D. Johnson, R. Rostek, and H. Böttner, J. Appl. Phys. 104, 033533 (2008).

    Article  ADS  Google Scholar 

  28. J. Hu, J. Y. Liu, and Z. Q. Mao, J. Phys.-Condens. Matter 26, 095801 (2014).

    Article  Google Scholar 

  29. J. J. Lin, and J. P. Bird, J. Phys.-Condens. Matter 14, R501 (2002).

    Article  ADS  Google Scholar 

  30. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energ. Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  31. H. B. Zhang, H. L. Yu, and G. W. Yang, Europhys. Lett. 95, 56002 (2011).

    Article  ADS  Google Scholar 

  32. J. D. Yao, J. M. Shao, S. W. Li, D. H. Bao, and G. W. Yang, Sci. Rep. 5, 14184 (2015).

    Article  ADS  Google Scholar 

  33. A. Q. Wu, X. Xu, and R. Venkatasubramanian, Appl. Phys. Lett. 92, 011108 (2008).

    Article  ADS  Google Scholar 

  34. L. Jia, W. Ma, and X. Zhang, Appl. Phys. Lett. 104, 241911 (2014).

    Article  ADS  Google Scholar 

  35. W. Richter, and C. R. Becker, Phys. Stat. Sol. (b) 84, 619 (1977).

    Article  ADS  Google Scholar 

  36. E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, Appl. Phys. Lett. 98, 011901 (2011).

    Article  ADS  Google Scholar 

  37. B. T. Bernstein, J. Appl. Phys. 34, 169 (1963).

    Article  ADS  Google Scholar 

  38. H. Eilers, E. Strauss, and W. M. Yen, Phys. Rev. B 45, 9604 (1992).

    Article  ADS  Google Scholar 

  39. Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S. Y. Quek, and Q. Xiong, Phys. Rev. B 90, 245428 (2014).

    Article  ADS  Google Scholar 

  40. P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A. C. Ferrari, Nat. Mater. 11, 294 (2012), arXiv: 1106.1146.

    Article  ADS  Google Scholar 

  41. V. Wagner, G. Dolling, B. M. Powell, and G. Landweher, Phys. Stat. Sol. (b) 85, 311 (1978).

    Article  ADS  Google Scholar 

  42. Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, Appl. Phys. Lett. 99, 053122 (2011).

    Article  ADS  Google Scholar 

  43. A. Q. Wu, and X. Xu, Appl. Surf. Sci. 253, 6301 (2007).

    Article  ADS  Google Scholar 

  44. S. Hunsche, K. Wienecke, T. Dekorsy, and H. Kurz, Phys. Rev. Lett. 75, 1815 (1995).

    Article  ADS  Google Scholar 

  45. S. Hunsche, H. Heesel, A. Ewertz, H. Kurz, and J. H. Collet, Phys. Rev. B 48, 17818 (1993).

    Article  ADS  Google Scholar 

  46. M. A. Rodríguez, J. L. Carrillo, and J. Reyes, Phys. Rev. B 35, 6318 (1987).

    Article  ADS  Google Scholar 

  47. Z. Luo, T. Shu, Z. Chen, T. Jiang, H. Wu, and T. Lai, Semicond. Sci. Technol. 34, 105011 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guowei Yang or Tianshu Lai.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11774438, and 12074441), National Basic Research Program of China (Grant No. 2013CB922403), and Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019A1515011572).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Yao, J., Yang, G. et al. Ultrafast dynamics of photoexcited carriers and coherent phonons in ultrathin Bi2Te3 thermoelectric films. Sci. China Phys. Mech. Astron. 65, 217312 (2022). https://doi.org/10.1007/s11433-021-1795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1795-5

Keywords

PACS number(s)

Navigation