Skip to main content
Log in

FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Stoichiometry-based analyses of metabolic networks have aroused significant interest of systems biology researchers in recent years. It is necessary to develop a more convenient modeling platform on which users can reconstruct their network models using completely graphical operations, and explore them with powerful analyzing modules to get a better understanding of the properties of metabolic systems. Herein, an in silico platform, FluxExplorer, for metabolic modeling and analyses based on stoichiometry has been developed as a publicly available tool for systems biology research. This platform integrates various analytic approaches, including flux balance analysis, minimization of metabolic adjustment, extreme pathways analysis, shadow prices analysis, and singular value decomposition, providing a thorough characterization of the metabolic system. Using a graphic modeling process, metabolic networks can be reconstructed and modified intuitively and conveniently. The inconsistencies of a model with respect to the FBA principles can be proved automatically. In addition, this platform supports systems biology markup language (SBML). FluxExplorer has been applied to rebuild a metabolic network in mammalian mitochondria, producing meaningful results. Generally, it is a powerful and very convenient tool for metabolic network modeling and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varner, J., Ramdrishan D: Metabolic engineering from a cybernetic perspective I, Biotechnol. Prog., 1999, 15: 407–425.

    Google Scholar 

  2. Fell, D., Understanding the Control of Metabolism, London: Portland Press, 1996.

    Google Scholar 

  3. Varma, A., Palsson, B. O., Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110, Appl. Environ. Microbiol., 1994, 60: 3724–3731.

    Google Scholar 

  4. Palsson, B., The challenges of in silico biology, Nature Biotechnol., 2000, 18: 1147–1150.

    Article  Google Scholar 

  5. McAdams, H. H., Shapiro, L., A bacterial cell-cycle regulatory network operating in time and space, Science, 2003, 301: 1874–1877.

    Article  Google Scholar 

  6. Covert, M. W., Schilling, C. H., Palsson, B., Regulation of gene expression in flux balance models of metabolism, J. Theor. Biol., 2001, 213: 73–88.

    Article  Google Scholar 

  7. Ibarra, R.U., Edwards, J. S., Palsson, B. O., Escherichis coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth, Nature, 2002, 420: 186–189.

    Article  Google Scholar 

  8. Edwards, J. S., Palsson, B. O., The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities, Proc. Natl. Acad. Sci. USA, 2000, 97(10): 5528–5533.

    Article  Google Scholar 

  9. Schilling, C. H., Palsson, B. O., The underlying pathway structure of biochemical reaction networks, Proc. Natl. Acad. Sci. USA, 1998, 95: 4193–4198.

    Article  Google Scholar 

  10. Klamt, S., Stelling, J., Ginkel, M. et al., FluxAnalyzer: Exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps, Bioinformatics, 2003, 19: 261–269.

    Article  Google Scholar 

  11. Lee, D., Yun, H., Park, S. et al., MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis, Bioinformatics, 2003, 19: 2144–2146.

    Google Scholar 

  12. Tomita, M., Hashimoto, K., Takahashi, K. et al., E-CELL: Software environment for whole-cell simulation, Bioinformatics, 1999, 15(1): 72–84.

    Article  Google Scholar 

  13. Segrè, D., Vitkup, D., Chruch, G. M., Analysis of optimality in natural and perturbed metabolic networks, Proc. Natl. Acad. Sci. USA, 2002, 99: 15112–15117.

    Google Scholar 

  14. Papp, B., Pál, C., Hurst, L. D., Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast, Nature, 2004, 429: 661–664.

    Article  Google Scholar 

  15. Papin, J. A., Price, N. D., Palsson, B. O., Extreme pathway lengths and reaction participation in genome-scale metabolic networks, Genome Res., 2002, 12: 1889–1900.

    Article  Google Scholar 

  16. Price, N. D., Reed, J. L., Papin, J. A. et al., Analysis of metabolic capabilities using singular value decomposition of extreme pathway matrices, Biophys. J., 2003, 84: 794–804.

    Google Scholar 

  17. Famili, I., Palsson, B. O., Systemic metabolic reactions are obtained by singular value decomposition of genome-scale stiochiometric matrices, J. Theor. Biol., 2003, 224: 87–96.

    Article  Google Scholar 

  18. Schilling, C. H., Schuster, S., Palsson, B. O., Metabolic pathway analysis: Basic concepts and scientific applications in the post-genomic era, Biotechnol. Prog., 1999, 15: 296–303.

    Google Scholar 

  19. Gombert, A. K., Nielsen, J., Mathematical modeling of metabolism, Curr. Opin. Biotechnol., 2000, 11: 180–186.

    Article  Google Scholar 

  20. Covert, M. W., Schilling, C. H., Famili, I. et al., Metabolic modeling of microbial strains in silico, Trends Biochem. Sci., 2001, 26(3): 179–186.

    Article  Google Scholar 

  21. Kauffman, K. J., Prakash, P., Edwards, J. S., Advances in flux balance analysis, Curr. Opin. Biotechnol., 2003, 14: 491–496.

    Article  Google Scholar 

  22. Schilling, C. H., Edwards, J. S., Palsson, B. O., Towards metabolic phenomics: Analysis of genomic data using flux balances, Biotechnol. Prog., 1999, 15: 288–295.

    Google Scholar 

  23. Schilling, C. H., Letscher, D., Palsson, B. O., Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective, J. Theor. Biol., 2000, 203: 229–248.

    Google Scholar 

  24. Pinney, J. W., Westhead, D. R., McConkey, G. A., Petri Net representations in systems biology, Biochem. Soc. Trans., 2003, 31: 1513–1515.

    Google Scholar 

  25. Cairns, C. B., Walther, J., Harken, A. H. et al., Mitochondrial oxidative phosphorylation thermodynamic efficiencies reflect physiological organ roles, Am. J. Physiol., 1998, 274: R1376–R1383.

    Google Scholar 

  26. Stanley, W. C., Lopaschuk, G. D., Hall, J. L. et al., Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions, Cardiovasc. Res., 1997, 33: 243–257.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo Qingming.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Luo, R., Liao, S., Zeng, S. et al. FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry. CHINESE SCI BULL 51, 689–696 (2006). https://doi.org/10.1007/s11434-006-0689-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-0689-0

Keywords

Navigation