Skip to main content
Log in

Carbonaceous particles in Muztagh Ata ice core, West Kunlun Mountains, China

  • Articles/Atmospheric Sciences
  • Published:
Chinese Science Bulletin

Abstract

Carbonaceous particles concentrations of OC and EC are determined using a two-step gas chromatography system in Muztagh Ata ice core covering the time period of 1955–2000. Over the period represented by the core, OC and EC concentrations appear to have changed significantly, varied in the range of 17.7–216.7 and 6.5–124.6, and averaged 61.8, 32.9 ng·g−1, respectively. The average concentration of EC in Muztagh Ata ice core is much lower than that in an Alpine ice core record (100–300 ng·g−1) during the same period, but it is a factor of 14 in Greenland ice core (2.3 ng·g−1), this may induce a strong impact on the snow albedo in the last 46 years in our study area. Observations indicate two periods with obviously high deposition concentrations (1955–1965 and 1974–1989) and two periods with low concentrations (1966–1973 and 1990–1995), as well as a recent increasing trend. By comparing EC and SO 2−4 concentration variations and deciphering OC/EC ratios recorded in the same ice core, we can judge roughly that the carbonaceous particles deposited in Muztagh Ata ice core were attributed to fossil fuel combustion sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etheridge D M, Pearman G I, Fraser P J. Changes in tropospheric methane between 1841 and 1978 from high accumulation-rate Antarctic ice core. Tellus, 1992, 44B: 282–294

    CAS  Google Scholar 

  2. Etheridge D M, Steele L P, Francey R J, et al. Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability. J Geophys Res, 1998, 103(D13): 15979–15993

    Article  CAS  Google Scholar 

  3. Lavanchy V M H, Gaggeler H W, Schotterer U, et al. Historical record of carbonaceous particle concentrations from a European High-alpine glacier (Colle Gnifetti, Switzerland). J Geophys Res, 1999, 104(D17): 21227–21236

    Article  CAS  Google Scholar 

  4. Novakov T, Ramanathan V, Hansen J E, et al. Large historical changes of fossil-fuel black carbon aerosols. Geophys Res Lett, 2003, 30(6), 1324, doi:10.1029/2002GL016345

    Article  Google Scholar 

  5. Wang C. A modeling study on the climate impacts of black carbon aerosols. J Geophys Res, 2004, 109, D03106, doi:10.1029/2003JD004084

    Article  CAS  Google Scholar 

  6. Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosol. Nature, 2001, 409: 695–697

    Article  PubMed  CAS  Google Scholar 

  7. Hansen J E, Sato M. Trends of measured climate forcing agents. Proc Natl Acad Sci USA, 2001, 98(26): 14778–14783

    Article  PubMed  CAS  Google Scholar 

  8. Birch M E, Cary R A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol, 1996, 25(3): 221–241

    Article  CAS  Google Scholar 

  9. Chow J C, Watson J G, Pritchett L C, et al. The DRI Thermal/Optical reflectance carbon analysis system: Description, evaluation, and applications in U.S. air quality studies. Atmos Environ, 1993, 27A(8): 1185–1201

    CAS  Google Scholar 

  10. Jacobson M Z. Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res, 2004, 109, D21201, doi:10.1029/2004JD004945

    Article  CAS  Google Scholar 

  11. Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: From Air Pollution to Climate Change. New York: John Wiley & Sons, 1998

    Google Scholar 

  12. Lohmann U, Feichter J. Global indirect aerosol effects: a review. Atmos Chem Phys, 2005, 5(3): 715–737

    Article  CAS  Google Scholar 

  13. Hansen J E, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102(D6): 6831–6864

    Article  CAS  Google Scholar 

  14. Johnson B T. The semi-direct aerosol effect. Doctor Dissertation. Reading: University of Reading, 2003

    Google Scholar 

  15. Hansen J E, Nazarenko L. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci USA, 2004, 101(2): 423–428

    Article  PubMed  CAS  Google Scholar 

  16. Barnett T P, Adam J C, Lettenmaier D P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 2005, 438: 303–309

    Article  PubMed  CAS  Google Scholar 

  17. Mayol-Bracero O L, Kirchstetter T W, Novakov T. Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources. J Geophys Res, 2002, 107(D19), 8030, doi:10.1029/2000JD000039

    Article  CAS  Google Scholar 

  18. Penner J E. Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon. In: Charlson R J, Heintzengerg J, eds. Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate, 1994 April 24–29, Berlin. Chichester: John Wiley & Sons, 1995. 91–108

    Google Scholar 

  19. IPCC. Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007

    Google Scholar 

  20. IPCC. Climate Change 2001: The physical science basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2001

    Google Scholar 

  21. Hansen J, Bond T, Cairns B, et al. Carbonaceous aerosols in the industrial era. Eos Trans AGU, 2004, 85(25): 241–244

    Article  Google Scholar 

  22. Warren S G, Clarke A D. Soot in the atmospheric and snow surface of Antarctica. J Geophys Res, 1990, 95(D2): 1811–1816

    Article  Google Scholar 

  23. McConnell J R, Edwards R, Kok G L et al. 20th century industrial black carbon emission altered Arctic climate forcing. Science, 2007, 317: 1381–1384

    Article  PubMed  CAS  Google Scholar 

  24. Xu B Q, Yao T D, Liu X Q, et al. Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Ann Glaciol, 2006, 43(1): 257–262

    Article  CAS  Google Scholar 

  25. Liu X Q, Wang N L, Yao T D, et al. Carbonaceous aerosols in snow and ice in the Tibetan plateau. Earth Sci Front (in Chinese), 2006, 13(5): 335–341

    Google Scholar 

  26. Lavanchy V M H, Gaggeler H W, Nyeki S, et al. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmos Environ, 1999, 33(17): 2759–2769

    Article  CAS  Google Scholar 

  27. Szidat S, Jenk T M, Gaggeler H W, et al. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nucl Instrum Methods Phys Res B, 2004, 223–224: 829–836

    Article  CAS  Google Scholar 

  28. Clausen H B, Hammer C U. The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations. Ann Glaciol, 1988, 10: 16–22

    CAS  Google Scholar 

  29. Warren S G, Wiscombe W J. A model for the spectral albeo of snow. II: Snow containing atmospheric aerosols. J Atmos Sci, 1980, 37: 2734–2745

    Article  Google Scholar 

  30. Li J. Organochlorine pesticides in snow-ice, Mt. Eversest region and Muztagata Glacier, China. Dissertation for the Doctoral Degree (in Chinese). Beijing: Peking University, 2005. 90–92

    Google Scholar 

  31. Flanner M G, Zender C S, Randerson J T, et al. Present-day climate forcing and response from black carbon in snow. J Geophys Res, 2007, 112, D11202, doi:10.1029/2006JD008003

    Article  CAS  Google Scholar 

  32. Turpin B J, Huntzicker J J. Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations. Atmos Environ, 1991, 25A(2): 207–215

    CAS  Google Scholar 

  33. Chen Z L, Ge S. Measurement and analysis for atmospheric aerosol particulates in Beijing. Res Environ Sci (in Chinese), 1994, 7(3): 1–9

    Google Scholar 

  34. Gillies J A, Gertler A W. Comparison and evaluation of chemically speciated mobile source PM2.5 particulate matter profiles. J Air Waste Manage Assoc, 2000, 50(8): 1459–1480

    CAS  Google Scholar 

  35. Gillies J A, Gertler A W, Sagebiel J C, et al. On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda Tunnel, Los Angeles, California. Environ Sci Technol, 2001, 35(6): 1054–1063

    Article  PubMed  CAS  Google Scholar 

  36. Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ, 1995, 29(23): 3527–3544

    Article  CAS  Google Scholar 

  37. Chow J C, Watson J G, Lu Z, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ, 1996, 30(12): 2079–2112

    Article  CAS  Google Scholar 

  38. Wolff G T, Groblicki P J, Cadle S H, et al. Particulate carbon at various locations in the United States. In: Wolff G T, Klimisch R L, eds. Particulate Carbon: Atmospherc Life Cycle. New York: Plenum Press, 1982. 297–315

    Google Scholar 

  39. Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles, 2001, 15(4): 955–966

    Article  CAS  Google Scholar 

  40. Duan K, Thompson L G, Yao T, et al. A 1000 year history of atmospheric sulfate concentrations in southern Asia as recorded by a Himalayan ice core. Geophy Res Lett, 2007, 34, L01810, doi:10.1029/2006GL027456

    Article  Google Scholar 

  41. Smith S J, Pitcher H, Wigley T M L. Global and regional anthropogenic sulfur dioxide emissions. Glob Planet Change, 2001, 29(1–2): 99–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianQin Liu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 40471022 and 40525001), the Ministry of Science and Technology of China (Grant No. 2005CB422004), and the Innovation and Centurial Program of Chinese Academy of Sciences (Grant No. 2004401)

About this article

Cite this article

Liu, X., Xu, B., Yao, T. et al. Carbonaceous particles in Muztagh Ata ice core, West Kunlun Mountains, China. Chin. Sci. Bull. 53, 3379–3386 (2008). https://doi.org/10.1007/s11434-008-0294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0294-5

Keywords

Navigation