Skip to main content
Log in

Progress in bionic information processing techniques for an electronic nose based on olfactory models

  • Review/Bionic Engineering
  • Published:
Chinese Science Bulletin

Abstract

As a novel bionic analytical technique, an electronic nose, inspired by the mechanism of the biological olfactory system and integrated with modern sensing technology, electronic technology and pattern recognition technology, has been widely used in many areas. Moreover, recent basic research findings in biological olfaction combined with computational neuroscience promote its development both in methodology and application. In this review, the basic information processing principle of biological olfaction and artificial olfaction are summarized and compared, and four olfactory models and their applications to electronic noses are presented. Finally, a chaotic olfactory neural network is detailed and the utilization of several biologically oriented learning rules and its spatiotemporal dynamic propties for electronic noses are discussed. The integration of various phenomena and their mechanisms for biological olfaction into an electronic nose context for information processing will not only make them more bionic, but also perform better than conventional methods. However, many problems still remain, which should be solved by further cooperation between theorists and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardner J W, Bartlett P N. A brief history of electronic noses. Sens Actuator B-Chem, 1994, 18(1–3): 211–220

    Google Scholar 

  2. Persaud K, Dodd G H. Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature, 1982, 299: 352–355

    Article  Google Scholar 

  3. Rock F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev, 2008, 108(2): 705–725

    Article  Google Scholar 

  4. Pearce T C, Schiffman S S, Nagle H T, et al. Handbook of Machine Olfaction: Electronic Nose Technology. Weinheim: Wiley-VCH, 2003

    Google Scholar 

  5. James D, Scott S M, Ali Z, et al. Chemical sensors for electronic nose systems. Microchim Acta, 2005, 149(1–2): 1–17

    Article  Google Scholar 

  6. Gutierrez-Osuna R. Pattern analysis for machine olfaction: a review. IEEE Sens J, 2002, 2(3): 189–202

    Article  Google Scholar 

  7. Wu C S, Wang L J, Zhou J, et al. The progress of olfactory transduction and biomimetic olfactory-based biosensors. Chin Sci Bull, 2007, 54(14): 1886–1896

    Article  Google Scholar 

  8. Lledo P M, Gheusi G, Vincent J D. Information processing in the mammalian olfactory system. Physiol Rev, 2005, 85: 281–317

    Article  Google Scholar 

  9. Firestein S. How the olfactory system makes sense of scents. Nature, 2001, 413: 211–218

    Article  Google Scholar 

  10. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1): 175–187

    Article  Google Scholar 

  11. Touhara K. Odor discrimination by G protein-coupled olfactory receptors. Microsc Res Tech, 2002, 58(3): 135–141

    Article  Google Scholar 

  12. Mori K, Nagao H, Yoshihara Y. The olfactory bulb: coding and processing of odor molecule information. Science, 1999, 286: 711–715

    Article  Google Scholar 

  13. Zou Z H, Buck L B. Combinatorial effects of odorant mixes in olfactory cortex. Science, 2006, 311: 1477–1481

    Article  Google Scholar 

  14. Craven M A, Gardner J W, Bartlett P N. Electronic noses-development and future prospects. Trac Trends Anal Chem, 1996, 15(9): 486–493

    Article  Google Scholar 

  15. Pearce T C. Computational parallels between the biological olfactory pathway and its analogue ‘the electronic nose’: Part II. Sensor-based machine olfaction. Biosystems, 1997, 41(2): 69–90

    Article  Google Scholar 

  16. Shaffer R E, Rose-Pehrsson S L, McGill R A. A comparison study of chemical sensor array pattern recognition algorithms. Anal Chim Acta, 1999, 384: 305–317

    Article  Google Scholar 

  17. Haugen J E, Kvaal K. Electronic nose and artificial neural network. Meat Sci, 1998, 49: S273–S286

    Article  Google Scholar 

  18. Haykin S. Neural Networks: A Comprehensive Foundation. 2nd ed. Englewood Cliffs NJ: Prentice-Hall, 1999

    Google Scholar 

  19. Gu F J, Zhang H M, Wang Y J, et al. Nonlinear dynamics problems in neural systems (in Chinese). For Med Sci (Biom Eng Fasc), 1995, 18(4): 187–194

    Google Scholar 

  20. Lv Z D, Yan P F. The necessity of introducing chaos into artificial neural networks (in Chinese). Beijing Biom Eng, 2002, 21(3): 207–211

    Google Scholar 

  21. Simoes de Souza F M, Antunes G. Biophysics of olfaction. Rep Prog Phys, 2007, 70(3): 451–491

    Article  Google Scholar 

  22. White J, Dickinson T A, Walt D R, et al. An olfactory neural network for vapor recognition in an artificial nose. Biol Cybern, 1998, 78(4): 245–251

    Article  Google Scholar 

  23. White J, Hamilton K A, Neff S R, et al. Emergent properties of odor information coding in a representational model of the salamander olfactory bulb. J Neur, 1992, 12(5): 1772–1780

    Google Scholar 

  24. Hopfield J J. Pattern recognition computation using action potential timing for stimulus representation. Nature, 1995, 376: 33–36

    Article  Google Scholar 

  25. White J, Kauer J S. Odor recognition in an artificial nose by spatio-temporal processing using an olfactory neuronal network. Neurocomputing, 1999, 26–27: 919–924

    Article  Google Scholar 

  26. Ambros-Ingerson J, Granger R, Lynch G. Simulation of paleocortex performs hierarchical clustering. Science, 1990, 247: 1344–1348

    Article  Google Scholar 

  27. Ramanathan M. Statistical model of an electronic olfactory. Masters Dissertations, Oklahoma State University, 1995

  28. Ratton L, Kunt T, McAvoy T, et al. A comparative study of signal processing techniques for clustering microsensor data (a first step towards an artificial nose). Sens Actuators B-Chem, 1997, 41(1–3): 105–120

    Article  Google Scholar 

  29. Pearce T C, Verschure P F M J, White J, et al. Robust stimulus en coding in olfactory processing: Hyperacuity and efficient signal transmission. In: Wermter S, Austin J, Willshaw D, eds. Emergent Neural Computation Architectures Based on Neuroscience, Berlin: Springer-Verlag, 2001, 461–479

    Google Scholar 

  30. Koickal T J, Hamilton A, Tan S L, et al. Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans Circuits Syst I-Regul Pap, 2007, 54(1): 60–73

    Article  Google Scholar 

  31. Raman B, Yamanaka T, Gutierrez-Osuna R. Contrast enhancement of gas sensor array patterns with a neurodynamics model of the olfactory bulb. Sens Actuators B-Chem, 2006, 119(2): 547–555

    Article  Google Scholar 

  32. Raman B, Gutierrez-Galvez A, Perera-Lluna A, et al. Sensor-based machine olfaction with a neurodynamics model of the olfactory bulb. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 Sep 28–Oct 2, Sendai. New York: Institute of Electrical and Electronics Engineers Inc, 2004. 319–324

    Google Scholar 

  33. Raman B, Gutierrez-Osuna R. Concentration normalization with a model of gain control in the olfactory bulb. Sens Actuators B-Chem, 2006, 116(1–2): 36–42

    Article  Google Scholar 

  34. Raman B, Gutierrez-Osuna R. Chemosensory processing in a spiking model of the olfactory bulb: chemotopic convergence and center surround inhibition. Advances in Neural Information Processing Systems, 2004, 17[2004-12-13]. http://books.nips.cc/nips17.html

  35. Freeman W J. Mass Action in the Nervous System. New York: Academic Press, 1975

    Google Scholar 

  36. Yao Y, Freeman W J. Model of biological pattern recognition with spatially chaotic dynamics. Neural Netw, 1990, 3(2): 153–170

    Article  Google Scholar 

  37. Freeman W J. Neurodynamics: An Exploration of Mesoscopic Brain Dynamics. London: Springer-Verlag, 2000

    Google Scholar 

  38. Freeman W J. Nonlinear gain mediating cortical stimulus.response relations. Biol Cybern, 1979, 33(4): 237–247

    Article  Google Scholar 

  39. Chang H J, Freeman W J, Burke B C. Biologically modeled noise stabilizing neurodynamics for pattern recognition. Int J Bifurcation Chaos, 1998, 8(2): 321–345

    Article  Google Scholar 

  40. Chang H J, Freeman W J, Burke B C. Optimization of olfactory model in software to give 1/f power spectra reveals numerical instabilities in solutions governed by aperiodic (chaotic) attractors. Neural Netw, 1998, 11(3): 449–466

    Article  Google Scholar 

  41. Chang H J, Freeman W J. Parameter optimization in models of the olfactory neural system. Neural Netw, 1996, 9(1): 1–14

    Article  Google Scholar 

  42. Ouyang K, Wang Z, Jia W, et al. A study on non-linear dynamics of rabbit’s olfactory system-mathematical basis of chaos simulation (in Chinese). Beijing Biom Eng, 2002, 21(2): 119–121

    Google Scholar 

  43. Ouyang K, Yang D, Jia W, et al. A study of dynamics of the rabbit’s olfactory system-a new approach for pattern recognition. In: Anon, eds. Proceedings of International Joint Conference on Neural Networks, 2001 Jul 15–19, Washington DC. New York: Institute of Electrical and Electronics Engineers Inc, 2001. 2: 1077–1082

    Google Scholar 

  44. Wang L, Li G, Guo H J, et al. Application of classification of one dimensional sequence using nonlinear model based on olfactory system (in Chinese). J Syst Sim, 2004, 16(3): 564–569

    Google Scholar 

  45. Yang R N, Hu Z Z, Lu J. The simulation and analysis of biological olfactory neural model (in Chinese). J Biom Eng Res, 2006, 3: 131–136

    Google Scholar 

  46. Kozma R, Freeman W J. Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing, 2002, 44–46: 1107–1112

    Article  Google Scholar 

  47. Shimoide K, Freeman W J. Dynamic neural network derived from the olfactory system with examples of applications. IEICE Trans Fundam Electron Commun Comput Sci, 1995, E78-A(7): 869–884

    Google Scholar 

  48. Li G, Zhang J, Freeman W J. Engineering applications of olfactory model from pattern recognition to artificial olfaction. In: Perlovsky L I, Kozma R, eds. Neurodynamics of Cognition and Consciousness, New York: Springer-Verlag, 2007: 255–276

    Chapter  Google Scholar 

  49. Yang X L, Fu J, Lou Z G, et al. Tea classification based on artificial olfaction using bionic olfactory neural networks. In: Wang J, Yi Z, Zurada J M, et al, eds. Advances in Neural Networks. New York: Springer-Verlag, 2006. 343–348

    Google Scholar 

  50. Kozma R, Freeman W J. Chaotic resonance-methods and applications for robust classification of noise and variable patterns. Int J Bifurcation Chaos, 2001, 11(6): 1607–1629

    Article  Google Scholar 

  51. Fu J, Li G, Qin Y, et al. A pattern recognition method for electronic noses based on an olfactory neural network. Sens Actuators B-Chem, 2007, 125(2): 489–497

    Article  Google Scholar 

  52. Li X, Li G, Wang L, et al. A study on a bionic pattern classifier based on olfactory neural system. Int J Bifurcation Chaos, 2006, 16(8): 2425–2434

    Article  Google Scholar 

  53. Fu J, Yang X L, Yang X L, et al. Application of biologically modeled chaotic neural network to pattern recognition in artificial olfaction. In: Anon, eds. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual International Conference, 2005 Sep 1–4, Shanghai. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2005. 4666–4669

    Google Scholar 

  54. Gutierrez-Galvez A, Gutierrez-Osuna R. Increasing the separability of chemosensor array patterns with Hebbian/anti-Hebbian learning. Sens Actuators B-Chem, 2006, 116(1–2): 29–35

    Article  Google Scholar 

  55. Gutierrez-Galvez A, Gutierrez-Osuna R. Contrast enhancement and background suppression of chemosensor array patterns with the KIII model. Int J Intell Syst, 2006, 21(9): 937–953

    Article  Google Scholar 

  56. Gutierrez-Osuna R, Gutierrez-Galvez A. Habituation in the KIII olfactory model with chemical sensor arrays. IEEE Trans Neural Netw, 2003, 14(6): 1565–1568

    Article  Google Scholar 

  57. Quarder S, Claußnitzer U, Otto M. Using singular-value decompositions to classify spatial patterns generated by a nonlinear dynamic model of the olfactory system. Chemometrics Intell. Lab Syst, 2001, 59(1–2): 45–51

    Article  Google Scholar 

  58. Otto M, Quarder S, Claußnitzer U, et al. A nonlinear dynamic system for recognizing chemicals based on chemical sensors and optical spectra. In: Proceedings of the 4th World Multiconference on Systemics, Cybernetics and Informatics, 2000 July 23–26, Orlando: International Institute of Informatics and Systemics, 2000. 413–418

    Google Scholar 

  59. Claußnitzer U, Quarder S, Otto M. Interpretation of analytical patterns from the output of chaotic dynamical memories. Fresen J Anal Chem, 2001, 369(7–8): 698–703

    Google Scholar 

  60. Gutierrez-Galvez A, Gutierrez-Osuna R. Pattern completion through phase coding in population neurodynamics. Neural Netw, 2003, 16(5–6): 649–656

    Article  Google Scholar 

  61. Fu J, Li G, Freeman W J. Pattern classification method for electronic noses based on olfactory neural network using time series (in Chinese). Chinese Journal of Sensors and Actuators, 2007, 20(9): 1958–1962

    Google Scholar 

  62. Freeman W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern, 1987, 56(2–3): 139–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Li.

Additional information

Supported by the National Creative Research Groups Science Foundation of China (Grant No. 60421002) and National Basic Research Programme of China (Grant No. 2004CB720302)

About this article

Cite this article

Li, G., Fu, J., Zhang, J. et al. Progress in bionic information processing techniques for an electronic nose based on olfactory models. Chin. Sci. Bull. 54, 521–534 (2009). https://doi.org/10.1007/s11434-008-0591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0591-z

Keywords

Navigation