Skip to main content
Log in

Zircon U–Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area, Xinjiang: constraints on the Precambrian crustal evolution in the Central Tianshan Block

  • Article
  • Geology
  • Published:
Chinese Science Bulletin

Abstract

The architecture and growth history of Precambrian crustal basements in the Central Tianshan Block play a key role in understanding the tectonic evolution of the Chinese Tianshan Orogenic Belt. In this study, we present precise LA-ICP-MS zircon U–Pb dating and LA-MC-ICPMS zircon Hf isotopic data for two granitic gneisses from Alatage area in the Central Tianshan Block. The magmatic zircons from both samples yield similar protolith ages of 945 ± 6 and 942 ± 6 Ma, indicating that the early Neoproterozoic magmatism is prevailed in the Alatage area. These zircons have crustal Hf model ages of 1.82–2.22 and 1.70–2.03 Ga, respectively, which are significantly older than their crystallization ages. It indicates that their parental magmas were derived from the reworking of ancient crust. However, we suggest that these Paleoproterozoic Hf model ages might result from mixing of continental materials with different ages in the Neoproterozoic crust. The inherited (detrital) zircon cores not only yield a wide age range of ca. 989–1617 Ma, but also exhibit large Hf-isotope variations with Hf model ages of 1.54–2.30 Ga. In particular, some 1.4–1.6 Ga zircons show high initial 176Hf/177Hf ratios, consistent with those of depleted mantle, which indicates that the Mesoproterozoic event involved both reworking of older crust and generation of juvenile crust. The Central Tianshan Block has different Precambrian crustal growth history from the Tarim Craton. Therefore, it would not be a fragment of the Precambrian basement of the Tarim Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han BF, He GQ, Wang XC et al (2011) Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth Sci Rev 109:74–93

    Article  Google Scholar 

  2. Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  3. Jahn BM, Griffin WL, Windley B (2000) Continental growth in the Phanerozoic: evidence from Central Asia. Tectonophysics 328:7–10

    Article  Google Scholar 

  4. Jahn BM, Wu FY, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Google Scholar 

  5. Jahn BM, Windley B, Natal’in B et al (2004) Phanerozoic continental growth in Central Asia. J Asian Earth Sci 23:599–603

    Article  Google Scholar 

  6. Hong DW, Zhang JS, Wang T et al (2004) Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. J Asian Earth Sci 23:799–813

    Article  Google Scholar 

  7. Xiao WJ, Zhang LC, Qin KZ et al (2004) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. Am J Sci 304:370–395

    Article  Google Scholar 

  8. Xiao WJ, Han CM, Yuan C et al (2008) Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci 32:102–117

    Article  Google Scholar 

  9. Wang B, Faure M, Shu LS et al (2008) Paleozoic tectonic evolution of the Yili Block, western Chinese Tianshan. B Soc Géol Fr 179:483–490

    Article  Google Scholar 

  10. Charvet J, Shu LS, Laurent-Charvet S et al (2011) Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci China Ser D: Earth Sci 54:166–184

    Article  Google Scholar 

  11. He ZY, Zhang ZM, Zong KQ et al (2012) Zircon geochronology of Xingxingxia quartz dioritic gneisses: implications for the tectonic evolution and Precambrian basement affinity of Chinese Tianshan orogenic belt. Acta Petrol Sin 28:1857–1874 (in Chinese)

    Google Scholar 

  12. Hu AQ, Wei GJ, Jahn BM et al (2010) Formation of the 0.9 Ga Neoproterozoic granitoids in the Tianshan Orogen, NW China: constraints from the SHRIMP zircon age determination and its tectonic significance. Geochimica 39:197–212 (in Chinese)

    Google Scholar 

  13. Chen XY, Wang YJ, Sun LH et al (2009) Zircon SHRIMP U-Pb dating of the granitic gneisses from Bingdaban and Laerdundaban (Tianshan Orogen) and their geological significances. Geochimica 38:24–431 (in Chinese)

    Google Scholar 

  14. Peng MX, Zhong CG, Zuo QH et al (2012) The ages of the gneissic granite from Kawabulag area in the Eastern Tianshan and their geological significances. Xinjiang Geol 30:12–18 (in Chinese)

    Google Scholar 

  15. Shi WX, Liao QA, Hu YQ et al (2010) Characteristics of Mesoproterozoic granites and their geological significances from Middle Tianshan Block, East Tianshan district, NW China. Geol Sci Technol Inf 29:29–37 (in Chinese)

    Google Scholar 

  16. Hu AQ, Wei GJ, Deng WF et al (2006) 1.4 Ga SHRIMP U-Pb age for zircons of granodiorite and its geological significance from the eastern segment of the Tianshan Mountains, Xinjiang. China Geochim 35:333–345 (in Chinese)

    Google Scholar 

  17. Hu AQ, Zhang ZG, Liu JY et al (1986) U–Pb age and evolution of Precambrian metamorphic rocks of Middle Tianshan uplift zone in eastern Tianshan, China. Geochimica 1:23–35 (in Chinese)

    Google Scholar 

  18. Luo FZ (1989) On Precambrian of mid-Tianshan uplift (metamorphic) zone. Xinjiang Geol 7:24–34 (in Chinese)

    Google Scholar 

  19. Liu SW, Guo ZJ, Zhang ZC et al (2004) Nature of the Precambrian metamorphic blocks in the eastern segment of Central Tianshan: constraints from geochronology and Nd isotopic geochemistry. Sci China Ser D: Earth Sci 47:1085–1094

    Article  Google Scholar 

  20. Khain E, Bibikova E, Salnikova E et al (2003) The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. Precambrian Res 122:329–358

    Article  Google Scholar 

  21. Ma XX, Shu LS, Jahn BM et al (2012) Precambrian tectonic evolution of Central Tianshan, NW China: constraints from U–Pb dating and in situ Hf isotopic analysis of detrital zircons. Precambrian Res 222–223:450–473

    Article  Google Scholar 

  22. Hu AQ, Zhang GX, Zhang QF et al (1998) Constraints on the age of basement and crustal growth in Tianshan Orogen by Nd isotopic composition. Sci China Ser D: Earth Sci 41:648–657

    Article  Google Scholar 

  23. He GQ, Li MS, Han BF (2001) The geotectonic study for the Southwestern Tianshan and adjacent areas. Xinjiang Geol 19:7–11 (in Chinese)

    Google Scholar 

  24. Windley BF, Alexeiev D, Xiao WJ et al (2007) Tectonic models for accretion of the Central Asian orogenic belt. J Geol Soc Lond 164:31–47

    Article  Google Scholar 

  25. Guo ZJ, Li MS (1993) On the Early Paleozioc dispersed terranes in Mid-Tianshan. Acta Sci Nat Univ Pekin 29:356–362 (in Chinese)

    Google Scholar 

  26. Xiu QY, Yu HF, Li S (2002) Single-grained zircon dating of a granodioritic gneiss, Kawabulak group. Xinjiang Geol 20:335–337 (in Chinese)

    Google Scholar 

  27. Li S, Yu HF, Xiu QY (2002) On some problems of Precambrian basement in the Eastern Tianshan. Xinjiang Geol 20:346–351 (in Chinese)

    Google Scholar 

  28. Regional Geological Survey Team of Xinjiang Uygur Autonomous Region (1966) 1:200000 Geological Map of Kawabulag sheet, People’s Republic of China

  29. Liu YS, Hu ZC, Gao S et al (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  30. Liu YS, Gao S, Hu ZC et al (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  31. Ludwig KR (2001) ISOPLOT 2.49: a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre, Special Publication, no 1a, pp 1–58

  32. Wu FY, Yang YH, Xie LW et al (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  33. Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687

    Article  Google Scholar 

  34. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  35. Griffin WL, Pearson NJ, Belousova E et al (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  36. Griffin W, Belousova E, Shee S et al (2004) Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Res 131:231–282

    Article  Google Scholar 

  37. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, London

    Google Scholar 

  38. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Miner Geochem 53:27–62

    Article  Google Scholar 

  39. Belousova EA, Griffin WL, O’Reilly SY et al (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622

    Article  Google Scholar 

  40. Long XP, Yuan C, Sun M et al (2010) Archean crustal evolution of the northern Tarim craton, NW China: zircon U–Pb and Hf isotopic constraints. Precambrian Res 180:272–284

    Article  Google Scholar 

  41. He ZY, Xu XS, Niu YL (2010) Petrogenesis and tectonic significance of a Mesozoic granite–syenite–gabbro association from inland South China. Lithos 119:621–641

    Article  Google Scholar 

  42. Chen YB, Hu AQ, Zhang GX et al (2000) Precambrian basement age and characteristics of Southwestern Tianshan: zircon U–Pb geochronology and Nd–Sr isotopic compositions. Acta Petrol Sin 16:91–98 (in Chinese)

    Google Scholar 

  43. Chen YB, Hu AQ, Zhang GX et al (2000) Zircon U–Pb age of granitic gneiss on Duku highway in western Tianshan of China and its geological implications. Chin Sci Bull 45:649–653

    Article  Google Scholar 

  44. Chen YB, Hu AQ (1997) The REE and Sm–Nd isotope characteristics of Weiya granulite in the Eastern Tianshan. Geochimica 26:70–77 (in Chinese)

    Google Scholar 

  45. Lei RX, Wu CZ, Gu LX et al (2011) Zircon U–Pb chronology and Hf isotope of the Xingxingxia granodiorite from the Central Tianshan zone (NW China): implications for the tectonic evolution of the southern Altaids. Gondwana Res 20:582–593

    Article  Google Scholar 

  46. Ma XX, Shu LS, Santosh M et al (2012) Detrital zircon U–Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: implications on Proterozoic supercontinent history. Precambrian Res 206–207:1–16

    Article  Google Scholar 

  47. Li QG, Liu SW, Han BF et al (2005) Geochemistry of metasedimentary rocks of the Proterozoic Xingxingxia Complex: implications for provenance and tectonic setting of the Eastern Segment of the Central Tianshan Tectonic Zone, Northwestern China. Can J Earth Sci 42:287–306

    Article  Google Scholar 

  48. Hawkesworth C, Kemp A (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  49. Zheng YF, Zhang SB (2007) Formation and evolution of Precambrian continental crust in South China. Chin Sci Bull 52:1–12

    Article  Google Scholar 

  50. Zheng YF, Zhang SB, Zhao ZF et al (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96:127–150

    Article  Google Scholar 

  51. Condie KC, Beyer E, Belousova E et al (2005) U–Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambrian Res 139:42–100

    Article  Google Scholar 

  52. Wang LJ, Griffin W, Yu JH et al (2010) Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Res 177:131–144

    Article  Google Scholar 

  53. Zhang CL, Li HK, Santosh M et al (2012) Precambrian evolution and cratonization of the Tarim Block, NW China: petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro–TTG–potassic granite suite and Paleoproterozoic metamorphic belt. J Asian Earth Sci 47:5–20

    Article  Google Scholar 

  54. Shu LS, Deng XL, Zhu WB et al (2011) Precambrian tectonic evolution of the Tarim Block, NW China: new geochronological insights from the Quruqtagh domain. J Asian Earth Sci 42:774–790

    Article  Google Scholar 

  55. Long XP, Sun M, Yuan C et al (2012) Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: implications for the reconstruction of the Columbia supercontinent. Precambrian Res 222–223:474–487

    Article  Google Scholar 

  56. He ZY, Zhang ZM, Zong KQ et al (2012) Neoproterozoic granulites from the northeastern margin of the Tarim Craton: petrology, zircon U–Pb ages and implications for the Rodinia assembly. Precambrian Res 212–213:21–33

    Article  Google Scholar 

  57. Yu JH, O’Reilly SY, Zhou MF et al (2012) U–Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Res 222–223:424–449

    Article  Google Scholar 

  58. Li YJ, Song WJ, Wu GY et al (2005) Jinning granodiorite and diorite deeply concealed in the central Tarim Basin. Sci China Ser D 48:2061–2068

    Article  Google Scholar 

  59. Li ZX, Bogdanova SV, Collins AS et al (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160:179–210

    Article  Google Scholar 

  60. Ge RF, Zhu WB, Zheng BH et al (2012) Early Pan-African magmatism in the Tarim Craton: insights from zircon U–Pb–Lu–Hf isotope and geochemistry of granitoids in the Korla area, NW China. Precambrian Res 212–213:117–138

    Article  Google Scholar 

  61. Zhu WB, Zheng BH, Shu LS et al (2011) Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China: insights from LA-ICP-MS zircon U–Pb ages and geochemical data. Precambrian Res 185:215–230

    Article  Google Scholar 

  62. Long XP, Yuan C, Sun M et al (2011) Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Res 187:1–14

    Article  Google Scholar 

  63. Zhang CL, Yang DS, Wang HY et al (2011) Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: two phases of mafic igneous activity with different mantle sources. Gondwana Res 19:177–190

    Article  Google Scholar 

  64. Zhang CL, Zou HB, Wang HY et al (2012) Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block, NW China: interaction between plate subduction and mantle plume? Precambrian Res 222–223:488–502

    Article  Google Scholar 

  65. Zhang ZY, Zhu WB, Shu LS et al (2009) Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia. Geol Mag 146:150–154

    Article  Google Scholar 

  66. Zhu WB, Zhang ZY, Shu LS et al (2008) SHRIMP U–Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China: implications for the long-lasting breakup process of Rodinia. J Geol Soc Lond 165:887–890

    Article  Google Scholar 

  67. Zhu WB, Zheng BH, Shu LS et al (2011) Geochemistry and SHRIMP U–Pb zircon geochronology of the Korla mafic dykes: constrains on the Neoproterozoic continental breakup in the Tarim Block, northwest China. J Asian Earth Sci 42:791–804

    Article  Google Scholar 

Download references

Acknowledgments

We thank Profs. Zhiqin Xu, Jinyi Li, and Lixin Sun for their valuable directions and discussions. Prof. Guochun Zhao and three anonymous reviewers are thanked for their critical and constructive comments. This work was supported by the Program of Excellent Young Geologists of China Geological Survey (QNYC2-2012-21), the Ministry of Land and Resources of China (201011034), and the Chinese Geological Survey Project (12120113096400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu He.

About this article

Cite this article

Huang, B., He, Z., Zong, K. et al. Zircon U–Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area, Xinjiang: constraints on the Precambrian crustal evolution in the Central Tianshan Block. Chin. Sci. Bull. 59, 100–112 (2014). https://doi.org/10.1007/s11434-013-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0010-y

Keywords

Navigation