Skip to main content
Log in

Sky islands of southwest China. I: an overview of phylogeographic patterns

  • Review
  • Evolution
  • Published:
Chinese Science Bulletin

Abstract

Sky islands are high-elevation areas in continental mountain ranges, which are geographically isolated. We adopted this concept for the mountains in southwest China, which are among the most important biodiversity hot spots on earth. We reviewed the phylogeographic studies of this area and highlighted the sky-island features. We concluded that the genetic structures of species in these islands were shaped by complex topography, climate and habitats. The global climate change, such as Pleistocene climate fluctuations and periodic uplift of the Qinghai–Tibetan Plateau, also have important effects on biodiversity and geographic patterns, when species have responded idiosyncratically by changing their distributions or through adaptation. Future research needs in sky islands include multilocus data and comparative phylogeographic studies, integrating with the methodological advances in the other fields. Using these approaches, we can examine to what degree the geographic, climate and/or biological factors, shape strong geographic patterns, promote diversification/speciation and preserve species/genetic diversity. We hope this paper will inspire future work to uncover the mechanism that has generated the endemic biodiversity and to further resolve the most essential problem: How to protect the biodiversity with limited funding during the coming drastic global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heald W (1951) Sky islands of Arizona. Nat Hist 60:56–63

    Google Scholar 

  2. Mclaughlin SP (1994) An overview of the flora of the Sky Islands, southeastern Arizona: diversity, affinities, and insularity. Biodiversity and management of the Madrean Archipelago: the Sky Islands of southwestern United States and northwestern Mexico, pp 60–70

  3. Warshall P (1995) The Madrean sky island archipelago: a planetary overview. In: Debano LF, Gottfried GJ, Hamre RH et al (eds) Biodiversity and management of the Madrean Archipelago: the sky islands of southwestern United States and northwestern Mexico. US Department of Agriculture, Fort Collins, CO, pp 6–18

    Google Scholar 

  4. Hudson R, Slatkin M, Maddison W (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583

    Google Scholar 

  5. Knowles LL (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Mol Ecol 10:691–701

    Article  Google Scholar 

  6. Dechaine EG, Martin AP (2004) Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution 58:113–127

    Google Scholar 

  7. Dechaine EG, Martin AP (2005) Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the rocky mountains. Am J Bot 92:477–486

    Article  Google Scholar 

  8. Coulon A, Cosson JF, Angibault JM et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  Google Scholar 

  9. Browne RA, Ferree PM (2007) Genetic structure of southern Appalachian “sky island” populations of the southern red-backed vole (Myodes gapperi). J Mammal 88:759–768

    Article  Google Scholar 

  10. Hewitt G (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  11. McCormack JE, Bowen BS, Smith TB (2008) Integrating paleoecology and genetics of bird populations in two sky island archipelagos. BMC Biol 6:28

    Article  Google Scholar 

  12. Bowie RCK, Fjeldsa J, Hackett SJ et al (2006) Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal in shaping phylogeographical structure of an African montane forest robin. Mol Phylogenet Evol 38:171–188

    Article  Google Scholar 

  13. Downie DA (2004) Phylogeography in a galling insect, grape phylloxera, Daktulosphaira vitifoliae (Phylloxeridae) in the fragmented habitat of the Southwest USA. J Biogeogr 31:1759–1768

    Article  Google Scholar 

  14. Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915

    Google Scholar 

  15. Harpending H (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol Int Rec Res 66:591

    Google Scholar 

  16. Drummond AJ, Rambaut A, Shapiro B et al (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  Google Scholar 

  17. Wiens JJ (2004) Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    Google Scholar 

  18. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

    Article  Google Scholar 

  19. Mccormack JE, Smith TB (2008) Niche expansion leads to small-scale adaptive divergence along an elevation gradient in a medium-sized passerine bird. Proc R Soc B Biol Sci 275:2155–2164

    Article  Google Scholar 

  20. Masta SE, Maddison WP (2002) Sexual selection driving diversification in jumping spiders. Proc Natl Acad Sci USA 99:4442–4447

    Article  Google Scholar 

  21. Mccormack J, Huang H, Knowle L (2009) Sky islands. In: Gillespie RG, Clague DA (eds) Encyclopedia of Islands. University of California Press, Berkeley, CA, pp 841–843

    Google Scholar 

  22. Zhao E, Yang D (1997) Amphibians and reptiles of the Hengduan Mountain region. Science Press, Beijing

    Google Scholar 

  23. Guo P, Liu Q, Li C et al (2011) Molecular phylogeography of Jerdon’s pitviper (Protobothrops jerdonii): importance of the uplift of the Tibetan plateau. J Biogeogr 38:2326–2336

    Article  Google Scholar 

  24. Qu YH, Luo X, Zhang RY et al (2011) Lineage diversification and historical demography of a montane bird Garrulax elliotii—implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evol Biol 11:174

    Google Scholar 

  25. Qin L, Meng X-M, Kryukov AP et al (2007) Species and distribution patterns of small mammals in the Pingheliang Nature Reserve of Qinling Mountain, Shaanxi. Zool Res 28:231–242

    Google Scholar 

  26. Li Y, Xu L, Ma Y et al (2003) The species richness of nonvolant mammals in Shennongjia Nature Reserve, Hubei Province, China: distribution patterns along elevational gradient. Biodivers Sci 11:1–9

    Google Scholar 

  27. Zhao C, Wang CB, Ma XG et al (2013) Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol Phylogenet Evol 68:628–643

    Google Scholar 

  28. Zhang DC, Boufford DE, Ree RH et al (2009) The 29°N latitudinal line: an important division in the Hengduan mountains, a biodiversity hotspot in southwest China. Nordic J Bot 27:405–412

    Article  Google Scholar 

  29. He D, Li S, Zhang Y (2007) The variation and regional differences of precipitation in the Longitudinal Range-Gorge the Region. Chin Sci Bull 52:59–73

    Article  Google Scholar 

  30. Li BY (1989) Geomorphologic regionalization of the Hengduan Mountainous region. J Mt Res 7:13–20

    Google Scholar 

  31. Li XW, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Acta Bot Yunnanica 15:217–231

    Google Scholar 

  32. Yao Y, Zhang B, Han F et al (2010) Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China. J Mt Sci 7:123–132

    Article  Google Scholar 

  33. Myers N, Mittermeier R, Mittermeier C et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  34. Zhang RZ (2002) Geological events and mammalian distribution in China. Acta Zool Sin 48:141–153

    Google Scholar 

  35. Zhang R-Z (1997) Distribution of mammalian species in China. China Forestry Publishing House, Beijing

    Google Scholar 

  36. Li J, He QX, Hua X et al (2009) Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob Ecol Biogeogr 18:264–272

    Article  Google Scholar 

  37. Zhang M, Rao D, Yang J et al (2010) Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Mol Phylogenet Evol 54:47–58

    Article  Google Scholar 

  38. Liu Q, Chen P, He K et al (2012) Phylogeographic Study of Apodemus ilex (Rodentia: Muridae) in Southwest China. PLoS ONE 7:e31453

    Article  Google Scholar 

  39. Fan Z, Liu S, Liu Y et al (2012) Phylogeography of the South China field mouse (Apodemus draco) on the Southeastern tibetan plateau reveals high genetic diversity and glacial refugia. PLoS ONE 7:e38184

    Article  Google Scholar 

  40. Yang ZY, Yi TS, Pan YZ et al (2012) Phylogeography of an alpine plant Ligularia vellerea (Asteraceae) in the Hengduan Mountains. J Syst Evol 50:316–324

    Google Scholar 

  41. Zhu L, Zhan X, Meng T et al (2010) Landscape features influence gene flow as measured by cost-distance and genetic analyses: a case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains. BMC Genet 11:72

    Article  Google Scholar 

  42. Yang FS, Qin AL, Li YF et al (2012) Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan plateau. PLoS ONE 7

  43. Zhang TC, Comes HP, Sun H (2011) Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol Phylogenet Evol

  44. Clark M, Schoenbohm L, Royden L et al (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23:1006–1029

    Article  Google Scholar 

  45. Cheng J, Liu X, Gao Z et al (2001) Effect of the Tibetan Plateau uplifting on the geological environment of the Yunnan Plateau. Geoscience 15:290–296

    Google Scholar 

  46. Pan T, Wu S, He D et al (2012) Effects of longitudinal range-gorge terrain on the eco-geographical pattern in Southwest China. J Geog Sci 22:825–842

    Article  Google Scholar 

  47. Chen SD, Liu SY, Liu Y et al (2012) Molecular phylogeny of asiatic short-tailed shrews, genus Blarinella Thomas, 1911 (Mammalia: Soricomorpha: Soricidae) and its taxonomic implications. Zootaxa 3250:43–53

    Google Scholar 

  48. Li R, Chen W, Tu L et al (2009) Rivers as barriers for high elevation amphibians: a phylogeographic analysis of the alpine stream frog of the Hengduan Mountains. J Zool 277:309–316

    Article  Google Scholar 

  49. Zhang DR, Chen MY, Murphy RW et al (2010) Genealogy and palaeodrainage basins in Yunnan Province: phylogeography of the Yunnan spiny frog, Nanorana yunnanensis (Dicroglossidae). Mol Ecol 19:3406–3420

    Article  Google Scholar 

  50. Chung SL, Lo CH, Lee TY et al (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 394:769–773

    Article  Google Scholar 

  51. Wu FY, Huang BC, Ye K et al (2008) Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau. Acta Petrol Sin 24:1–30

    Google Scholar 

  52. Li J, Fang X (1999) Uplift of the Tibetan Plateau and environmental changes. Chin Sci Bull 44:2117–2124

    Article  Google Scholar 

  53. Liu J-Q, Wang Y-J, Wang A-L et al (2006) Radiation and diversification within the LigulariaCremanthodiumParasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol 38:31–49

    Article  Google Scholar 

  54. Liu J-Q, Gao T-G, Chen Z-D et al (2002) Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Mol Phylogenet Evol 23:307–325

    Article  Google Scholar 

  55. Clift PD, Blusztajn J, Duc NA (2006) Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys Res Lett 33:L19403

    Google Scholar 

  56. Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys 31:357–396

    Article  Google Scholar 

  57. Peng ZG, Ho SYW, Zhang YG et al (2006) Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes. Mol Phylogenet Evol 39:568–572

    Article  Google Scholar 

  58. Che J, W-W Zhou, J-S Hu et al (2010) Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci USA 107:13765–13770

  59. He DK, Chen YF (2006) Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J Biogeogr 33:1448–1460

    Article  Google Scholar 

  60. Zhang TC, Comes HP, Sun H (2011) Chloroplast phylogeography of Terminalia franchetii (Combretaceae) from the eastern Sino-Himalayan region and its correlation with historical river capture events. Mol Phylogenet Evol 60:1–12

    Article  Google Scholar 

  61. Zhao X, Qu Y, Zhang Y et al (2007) Discovery of Shigu paleolake in the Lijiang area, northwestern Yunnan, China and its significance for the development of the modern Jinsha River valley. Geol Bull China 26:960–969

    Google Scholar 

  62. Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:11–21

    Google Scholar 

  63. Zachos J, Pagani M, Sloan L et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  64. An Z, Kutzbach JE, Prell WL et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66

    Article  Google Scholar 

  65. Qiu ZD, Li CK (2005) Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau. Sci China Ser D Earth Sci 48:1246–1258

    Google Scholar 

  66. Qiang XK, Li ZX, Powell CM et al (2001) Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth Planet Sci Lett 187:83–93

    Article  Google Scholar 

  67. Jia G, Peng P, Zhao Q et al (2003) Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology 31:1093–1096

    Article  Google Scholar 

  68. Xu X, Fang X (2008) Rock magnetic record of Cenozoic lake sediments from the Linxia basin and aridification of the Asian inland. Front Earth Sci China 2:217–224

    Article  Google Scholar 

  69. He K, Li YJ, Brandley MC et al (2010) A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Mol Phylogenet Evol 56:734–746

    Article  Google Scholar 

  70. Li ZJ, Yu GH, Rao DQ et al (2012) Phylogeography and demographic history of Babina pleuraden (Anura, Ranidae) in southwestern China. PLoS ONE 7:e34013

    Google Scholar 

  71. Xie X-F, Yan H-F, Wang F-Y et al (2012) Chloroplast DNA phylogeography of Primula ovalifolia in central and adjacent southwestern China: past gradual expansion and geographical isolation. J Syst Evol 50:284–294

    Article  Google Scholar 

  72. Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359:183–195

    Article  Google Scholar 

  73. Soltis DE, Morris AB, Mclachlan JS et al (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  Google Scholar 

  74. Hewitt G (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  75. Rull V (2009) Microrefugia. J Biogeogr 36:481–484

    Article  Google Scholar 

  76. Gomez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Phylogeography in southern European refugia: evolutionary perspectives on the origins and conservation of European biodiversity. Dordrecht: Kluwer Academic Publishers, pp 155–188

  77. Igea J, Aymerich P, Fernandez-Gonzalez A et al (2013) Phylogeography and postglacial expansion of the endangered semi-aquatic mammal Galemys pyrenaicus. BMC Evol Biol 13:115

    Article  Google Scholar 

  78. Yu G, Zhang M, Rao D et al (2013) Effect of pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from Southwestern China. PLoS ONE 8:e56066

    Article  Google Scholar 

  79. Yan F, Zhou WW, Zhao HT et al (2013) Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaa boulengeri (Anura: Dicroglossidae). Mol Ecol 22:1120–1133

    Article  Google Scholar 

  80. Fazalova V, Nevado B, Peretolchina T et al (2010) When environmental changes do not cause geographic separation of fauna: differential responses of Baikalian invertebrates. BMC Evol Biol 10:320

    Article  Google Scholar 

  81. Wu CH, Li HP, Wang YX et al (2000) Low genetic variation of the Yunnan hare (Lepus comus G. Allen 1927) as revealed by mitochondrial cytochrome b gene sequences. Biochem Genet 38:147–153

    Article  Google Scholar 

  82. Zhao S, Zheng P, Dong S et al (2013) Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat Genet 45:67–71

    Google Scholar 

  83. Bennett KD, Provan J (2008) What do we mean by ‘refugia? Quatern Sci Rev 27:2449–2455

    Article  Google Scholar 

  84. Zhou TH, Li S, Qian ZQ et al (2010) Strong phylogeographic pattern of cpDNA variation reveals multiple glacial refugia for Saruma henryi Oliv. (Aristolochiaceae), an endangered herb endemic to China. Mol Phylogenet Evol 57:176–188

    Article  Google Scholar 

  85. Liu JQ, Sun YS, Ge XJ et al (2012) Phylogeographic studies of plants in China: advances in the past and directions in the future. J Syst Evol 50:267–275

    Article  Google Scholar 

  86. Ponniah M, Hughes J (2004) The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA. Evolution 58:1073–1085

    Google Scholar 

  87. Irwin DE, Bensch S, Price TD (2001) Speciation in a ring. Nature 409:333–337

    Article  Google Scholar 

  88. Monahan W, Pereira R, Wake D (2012) Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species. BMC Biol 10:20

    Article  Google Scholar 

  89. Toews DP, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930

    Article  Google Scholar 

  90. Brito P, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–455

    Article  Google Scholar 

  91. Emerson KJ, Merz CR, Catchen JM et al. (2010) Resolving postglacial phylogeography using high-throughput sequencing. In: Proceedings of the national academy of sciences, 2010, vol 107, pp 16196–16200

  92. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  Google Scholar 

  93. Cronn R, Knaus BJ, Liston A et al (2012) Targeted enrichment strategies for next-generation plant biology. Am J Bot 99:291–311

    Article  Google Scholar 

  94. O’neill EM, Schwartz R, Bullock CT et al (2013) Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol Ecol 22:111–129

    Article  Google Scholar 

  95. McCormack JE, Faircloth BC (2013) Next-generation phylogenetics takes root. Mol Ecol 22:19–21

    Article  Google Scholar 

  96. Avise JC, Arnold J, Ball RM et al (1987) Intraspecific phylogeography—the mitochondrial-DNA bridge between population-genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  97. Knowles LL (2009) Statistical phylogeography. Annu Rev Ecol Evol Syst 40:593–612

    Article  Google Scholar 

  98. Hickerson MJ, Carstens BC, Cavender-Bares J et al (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301

    Article  Google Scholar 

  99. Nielsen R, Beaumont MA (2009) Statistical inferences in phylogeography. Mol Ecol 18:1034–1047

    Article  Google Scholar 

  100. Bell RC, Mackenzie JB, Hickerson MJ et al (2012) Comparative multi-locus phylogeography confirms multiple vicariance events in co-distributed rainforest frogs. Proc R Soc B Biol Sci 279:991–999

    Article  Google Scholar 

  101. Carstens BC, Richards CL (2007) Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution 61:1439–1454

    Article  Google Scholar 

  102. Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  103. Knowles LL, Carstens BC, Keat ML (2007) Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr Biol 17:940–946

    Article  Google Scholar 

  104. Scoble J, Lowe AJ (2010) A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning. Divers Distrib 16:343–353

    Article  Google Scholar 

  105. Yang Z, Rannala B (2010) Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci USA 107:9264

    Google Scholar 

  106. Zelditch M (2004) Geometric morphometrics for biologists: a primer. Academic Press, London

    Google Scholar 

  107. Joost S, Bonin A, Bruford MW et al (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969

    Article  Google Scholar 

  108. Dai Z, Du J, Li J et al (2008) Runoff characteristics of the Changjiang River during 2006: effect of extreme drought and the impounding of the Three Gorges Dam. Geophys Res Lett 35:L07406

    Article  Google Scholar 

  109. Provan J, Maggs CA (2012) Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc R Soc B Biol Sci 279:39–47

    Article  Google Scholar 

  110. Pfenninger M, Balint M, Pauls S (2012) Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol Biol 12:224

    Article  Google Scholar 

  111. Bottrill MC, Joseph LN, Carwardine J et al (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23:649–654

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31272276), the Key Research Program of the Chinese Academy of Science (KJZD-EW-L07) and the State Key Laboratory of Genetics Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (GREKF11-03). We appreciate the three anonymous reviewers for their critical reviews and valuable suggestions. We thank Dr. John McCormack and Dr. Gina C. Gould for providing valuable comments and suggestions, as well as English editing which improved the quality of this manuscript. We thank Feng Dong and Guo-Hua Yu for discussion on an earlier draft of the manuscript. We also thank John McCormack, Zhenxin Fan, Dongru Zhang and Fusheng Yang for allowing us to reproduce the figures in their paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelong Jiang.

About this article

Cite this article

He, K., Jiang, X. Sky islands of southwest China. I: an overview of phylogeographic patterns. Chin. Sci. Bull. 59, 585–597 (2014). https://doi.org/10.1007/s11434-013-0089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0089-1

Keywords

Navigation