Skip to main content
Log in

Research progress in ZnO single-crystal: growth, scientific understanding, and device applications

  • Review
  • Semiconductor Technology
  • Published:
Chinese Science Bulletin

Abstract

Zinc oxide, a wide band-gap semiconductor, has shown extensive potential applications in high-efficiency semiconductor photoelectronic devices, semiconductor photocatalysis, and diluted magnetic semiconductors. Due to the undisputed lattice integrity, ZnO single crystals are essential for the fabrication of high-quality ZnO-based photoelectronic devices, and also believed to be ideal research subjects for understanding the underlying mechanisms of semiconductor photocatalysis and diluted magnetic semiconductors. This review, which is organized in two main parts, introduces the recent progress in growth, basic characterization, and device development of ZnO single crystals, and some related works in our group. The first part begins from the growth of ZnO single crystal, and summarizes the fundamental and applied investigations based on ZnO single crystals. These works are composed of the fabrication of homoepitaxial ZnO-based photoelectronic devices, the research on the photocatalysis mechanism, and dilute magnetic mechanism. The second part describes the fabrication of highly thermostable n-type ZnO with high mobility and high electron concentration through intentional doping. More importantly, in this part, a conceptual approach for fabricating highly thermostable p-type ZnO materials with high mobility through an integrated three-step treatment is proposed on the basis of the preliminary research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 13
Scheme 6

Similar content being viewed by others

Notes

  1. Up to now, industrialized hydrothermal growth of quartz crystal has been achieved. The output of the quartz by hydrothermal method has surpassed 1,850 tons in 2004. The technique and craft of the hydrothermal growth have been maturely developed, which means that industrial production of ZnO+ single crystal might be realized via this method.

References

  1. Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Google Scholar 

  2. Look DC (2005) Electrical and optical properties of p-type ZnO. Semicond Sci Technol 20:S55–S61

    Google Scholar 

  3. Hwang DK, Kang SH, Lim JH et al (2005) P-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl Phys Lett 86:222101

    Google Scholar 

  4. Tang ZK, Wong GKL, Yu P et al (1998) Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin film. Appl Phys Lett 72:3270–3272

    Google Scholar 

  5. Bagnall DM, Chen YF, Zhu Z et al (1997) Optically pumped lasing of ZnO at room temperature. Appl Phys Lett 70:2230–2232

    Google Scholar 

  6. Tsukazaki A, Ohtomo A, Onuma T et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46

    Google Scholar 

  7. Dadgar A, Krtschil A, Diez A, et al. In: Third International Conference on Materials for Advanced Technologies, Singapore 2005. paper N-6-OR12

  8. Meyer BK, Alver H, Hofmann DM et al (2004) Bound exciton and donor–acceptor pair recombinations in ZnO. Phys Status Solidi B 241:231–260

    Google Scholar 

  9. Agarwal G, Nause JE, Hill DN (1998) The scope of the ZnO growth. Mater Res Soc Symp Proc 512:41–46

    Google Scholar 

  10. Reynolds DC, Litton CW, Look DC et al (2004) High-quality, melt-grown ZnO single crystals. J Appl Phys 95:4802–4805

    Google Scholar 

  11. Nause J, Nemeth B (2005) Pressurized melt growth of ZnO boules. Semicond Sci Technol 20:S45–S48

    Google Scholar 

  12. Shiloh M, Gutman J (1971) Growth of ZnO single crystals by chemical vapour transport. J Cryst Growth 11:105–184

    Google Scholar 

  13. Piekarczyk W, Gazda S, Niemyski T (1972) The growth of zinc oxide cryst als by chemical transport. J Cryst Growth 12:272–276

    Google Scholar 

  14. Matsumoto K, Konemura K, Shimaoka G (1985) Crystal growth of ZnO by vapor transport in a closed tube using Zn and ZnCl2 as transport agents. J Cryst Growth 71:99–103

    Google Scholar 

  15. Matsumoto K, Shimaoka G (1988) Crystal growth of ZnO by chemical transport. J Cryst Growth 86:410–414

    Google Scholar 

  16. Matsumoto K, Noda K (1990) Crystal growth of ZnO by chemical transport using HgCl2 as a transport agent. J Cryst Growth 102:137–140

    Google Scholar 

  17. Look DC, Reynolds DC, Sizelove JR et al (1998) Electrical properties of bulk ZnO. Solid State Comm 105:399–401

    Google Scholar 

  18. Zhao YW, Dong ZY, Wei XC et al (2006) Defects and their influence on properties of bulk ZnO single crystal. Chin J Semi 27:336–339

    Google Scholar 

  19. Nielsen JW, Dearborn EF (1960) The growth of large single crystals of zinc oxide. J Phys Chem 64:1762–1763

    Google Scholar 

  20. Kleber W, Mlodoch R (1966) Über die Synthese von Zinkit-Einkristallen. Kristall Techn 1:249–259

    Google Scholar 

  21. Chase AB, Osmer J (1967) Localized cooling in flux crystal growth. J Am Ceram Soc 50:325–328

    Google Scholar 

  22. Wanklyn BM (1970) The growth of ZnO crystals from phosphate and vanadate fluxes. J Cryst Growth 7:107–108

    Google Scholar 

  23. Oka K, Shibata H, Kashiwaya S (2002) Crystal growth of ZnO. J Cryst Growth 509–513:237–239

    Google Scholar 

  24. Ehrentraut D, Sato H, Kagamitani Y et al (2006) Solvothermal growth of ZnO. Prog Cryst Growth Charact Mater 52:280–335

    Google Scholar 

  25. Dem’yanets LN, Kostomarov DV, Kuz’mina IP et al (2002) Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr Rep 47:S86–S98

    Google Scholar 

  26. Laudise RA, Ballman AA (1960) Hydrothermal synthesis of zinc oxide and zinc sulfide. J Phys Chem 64:688–691

    Google Scholar 

  27. Laudise RA, Kolb ED, Caporaso AJ (1964) Hydrothermal growth of large sound crystals of zinc oxide. J Am Ceram Soc 47:9–12

    Google Scholar 

  28. Kolb ED, Coriell AS, Laudise RA et al (1967) The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures. Mater Res Bull 2:1099–1106

    Google Scholar 

  29. Dem’yanets LN, Lyutin VI (2008) Status of hydrothermal growth of bulk ZnO: latest issues and advantages. J Cryst Growth 310:993–999

    Google Scholar 

  30. Zhang CL, Zhou WN, Hang Y et al (2008) Hydrothermal growth and characterization of ZnO crystals. J Cryst Growth 310:1819–1822

    Google Scholar 

  31. Lin WW, Chen DG, Zhang JY et al (2009) Hydrothermal growth of ZnO single crystals with high carrier mobility. Cryst Growth Des 9:4378–4383

    Google Scholar 

  32. Chen YF, Bagnall D, Yao T (2000) ZnO as a novel photonic material for the UV region. Mat Sci Eng B Solid 75:190–198

    Google Scholar 

  33. Chiou YZ, Su YK, Chang SJ et al (2002) Transparent tin electrodes in gan metal–semiconductor–metal ultraviolet photodetectors. Jpn J Appl Phys 41:3643–3645

    Google Scholar 

  34. Chen KJ, Hung FY, Chang SJ et al (2009) Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films. J Alloys Compd 479:674–677

    Google Scholar 

  35. Sandvik P, Mi K, Shahedipour F et al (2001) Al x Ga1−x N for solar-blind UV detectors. J Cryst Growth 231:366–370

    Google Scholar 

  36. Zheng QH, Huang F, Huang J et al (2012) High-responsivity solar-blind photodetector based on Mg0.46Zn0.54O thin film. IEEE Electr Device L 33:1033–1035

    Google Scholar 

  37. Ozbay E, Biyikli N, Kimukin I et al (2004) High-performance solar-blind photodetectors based on Al x Ga1−x N heterostructures. IEEE J Sel Topics Quantum Electron 10:742–751

    Google Scholar 

  38. Li L, Lee PS, Yan C et al (2010) Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv Mater 22:5145–5149

    Google Scholar 

  39. Ohtomo A, Kawasaki M, Koida T et al (1998) MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl Phys Lett 72:2466–2468

    Google Scholar 

  40. Takeuchi I, Yang W, Chang KS et al (2003) Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in Mg x Zn1−x O composition spreads. J Appl Phys 94:7336–7340

    Google Scholar 

  41. Endo H, Kikuchi M, Ashioi M et al (2008) High-sensitivity mid-ultraviolet Pt/Mg0.59Zn0.41O Schottky photodiode on a ZnO single Crystal substrate. Appl Phys Express 1:051201

    Google Scholar 

  42. Zheng QH, Huang F, Ding K et al (2011) MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates. Appl Phys Lett 98:221112

    Google Scholar 

  43. Aoki T, Hatanaka Y, Look DC (2000) ZnO diode fabricated by excimer-laser doping. Appl Phys Lett 76:3257–3258

    Google Scholar 

  44. Guo X, Choi JH, Tabata H et al (2001) Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn J Appl Phys 40:L177–L180

    Google Scholar 

  45. Wang H, Kang BS, Chen J et al (2006) Band-edge electroluminescence from N+-implanted bulk ZnO. Appl Phys Lett 80:102107

    Google Scholar 

  46. Zeng YJ, Ye ZZ, Lu YF et al (2008) Plasma-free nitrogen doping and homojunction light-emitting diodes based on ZnO. J Phys D Appl Phys 41:165104

    Google Scholar 

  47. Asahara H, Takamizu D, Inokuchi A et al (2010) Light-emitting diode based on ZnO by plasma-enhanced metal–organic chemical vapor deposition employing microwave excited plasma. Jpn J Appl Phys 49:04DG14

    Google Scholar 

  48. Nakahara K, Akasaka S, Yuji H et al (2010) Nitrogen doped Mg x Zn1−x O/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Appl Phys Lett 97:013501

    Google Scholar 

  49. Kato H, Yamamuro T, Ogawa A et al (2011) Impact of mixture gas plasma of N2 and O2 as the N source on ZnO-based ultraviolet light-emitting diodes fabricated by molecular beam epitaxy. Appl Phys Express 4:091105

    Google Scholar 

  50. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Google Scholar 

  51. He S, Zhang ST, Lu J et al (2011) Enhancement of visible light photocatalysis by grafting ZnO nanoplatelets with exposed (0001) facets onto a hierarchical substrate. Chem Commun 47:10797–10799

    Google Scholar 

  52. Ohno T, Bai L, Hisatomi T et al (2012) Photocatalytic water splitting using modified GaN: ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134:8254–8259

    Google Scholar 

  53. Xu LP, Hu YL, Pelligra C et al (2009) ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity. Chem Mater 21:2875–2885

    Google Scholar 

  54. Jiang TF, Xie TF, Zhang Y et al (2010) Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys Chem Chem Phys 12:15476–15481

    Google Scholar 

  55. Pan J, liu G, Lu GQ et al (2011) On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137

    Google Scholar 

  56. Jang ES, Won JH, Hwang SJ et al (2006) Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater 18:3309–3312

    Google Scholar 

  57. Wang YH, Huang F, Pan DM et al (2009) Ultraviolet-light-induced bactericidal mechanism on ZnO single crystals. Chem Commun 44:6783–6785

    Google Scholar 

  58. Zhan ZB, Wang YH, Lin Z et al (2011) Study of interface electric field affecting the photocatalysis of ZnO. Chem Commun 47:4517–4519

    Google Scholar 

  59. Pan H, Yi JB, Shen L et al (2007) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99:127201

    Google Scholar 

  60. Dietl T, Ohno H (2001) Ferromagnetism in III–V and II–VI semiconductor structures. Physica E 9:185–193

    Google Scholar 

  61. Dietl T (2010) A 10-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9:965–974

    Google Scholar 

  62. Dietl T, Haury A, d’Aubigné YM (1997) Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys Rev B 55:R3347–R3350

    Google Scholar 

  63. König J, Lin HH, MacDonald AH (2000) Theory of diluted magnetic semiconductor ferromagnetism. Phys Rev Lett 84:5628–5631

    Google Scholar 

  64. Sato K, Katayama-Yoshida H (2002) First principles materials design for semiconductor spintronics. Semicond Sci Technol 17:367–376

    Google Scholar 

  65. Kaminski A, Das Sarma S (2002) Microstructural and magnetic properties of ZnO: TM (TM = Co, Mn) diluted magnetic semiconducting nanoparticles. Phys Rev Lett 88:247202

    Google Scholar 

  66. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    Google Scholar 

  67. Liu XC, Shi EW, Chen ZZ et al (2008) Effect of donor localization on the magnetic properties of Zn–Co–O system. Appl Phys Lett 92:042502

    Google Scholar 

  68. Zhang HW, Shi EW, Chen ZZ et al (2006) Magnetism in Zn1−x Mn x O crystal prepared by hydrothermal method. Solid State Commu 137:272–274

    Google Scholar 

  69. Li W, Kang QQ, Lin Z et al (2006) Paramagnetic anisotropy of Co-doped ZnO single crystal. Appl Phys Lett 89:112507

    Google Scholar 

  70. Neumark GF (1998) Achievement of well conducting wide band-gap semiconductors: role of solubility and of nonequilibrium impurity incorporation. Phys Rev Lett 62:1800–1803

    Google Scholar 

  71. Chadi DJ (1994) Doping in ZnSe, ZnTe, MgSe, and MgTe wide-band-gap semiconductors. Phys Rev Lett 72:534–537

    Google Scholar 

  72. Zhang SB, Wei SH, Zunger A (2000) Microscopic origin of the phenomenological equilibrium “doping limit rule” in n-type III–V semiconductors. Phys Rev Lett 84:1232–1235

    Google Scholar 

  73. Minami T, Sato H, Nanto H et al (1995) Group III impurity doped zinc oxide thin films prepared by rf magnetron sputtering. Jpn J Appl Phys 24:L781–L784

    Google Scholar 

  74. Zhang SB, Wei SH, Zunger A (1998) A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds. J Appl Phys 83:3192–3196

    Google Scholar 

  75. Laks DB, Van de Walle CG, Neumark GF et al (1993) Acceptor doping in ZnSe versus ZnTe. Appl Phys Lett 63:1375–1377

    Google Scholar 

  76. Kohan AF, Ceder G, Morgan D et al (2000) First-principles study of native point defects in ZnO. Phys Rev B 61:15019–15024

    Google Scholar 

  77. Van de Walle CG (2001) Defect analysis and engineering in ZnO. Phys B 308–310:899–903

    Google Scholar 

  78. Cox SFJ, Davis EA, Cottrell SP et al (2001) Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys Rev Lett 86:2601–2604

    Google Scholar 

  79. Strzhemechny YM, Mosbacker HL, Look DC et al (2004) Remote hydrogen plasma doping of single crystal ZnO. Appl Phys Lett 84:2545–2547

    Google Scholar 

  80. Van de Walle CG (2000) Hydrogen as a cause of doping in zinc oxide. Phys Rev Lett 85:1012–1015

    Google Scholar 

  81. Lehmann W (1966) Edge emission of n-type conducting ZnO and CdS. Solid-State Electron 9:1107–1110

    Google Scholar 

  82. Sans JA, Sanchez-Royo JF, Segura A et al (2009) Chemical effects on the optical band-gap of heavily doped ZnO: MIII (M = Al, Ga, In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations. Phys Rev B 79:195105

    Google Scholar 

  83. Myong SY, Baik SJ, Lee CH et al (1997) Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material. Jpn J Appl Phys 36:L1078–L1081

    Google Scholar 

  84. Sans JA, Martinez-Criado G, Pellicer-Porres et al (2007) Thermal instability of electrically active centers in heavily Ga-doped ZnO thin films: X-ray absorption study of the Ga-site configuration. Appl Phys Lett 91:221904

    Google Scholar 

  85. Kumar M, Lee BT (2008) Improvement of electrical and optical properties of Ga and N co-doped p-type ZnO thin films with thermal treatment. Appl Surf Sci 254:6446–6449

    Google Scholar 

  86. Lu ZL, Zou WQ, Xu MX et al (2009) Structural and electrical properties of single crystalline a-doped ZnO thin films grown by molecular beam epitaxy. Chin Phys Lett 26:116102

    Google Scholar 

  87. Kim JH, Du Ahn B, Lee CH et al (2006) Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J Appl Phys 100:113515

    Google Scholar 

  88. Kang JH, Kim DW, Lee MH et al (2010) Damp heat stability of ZnO: Ga thin films on glass substrate. J Korean Phys Soc 57:1081–1085

    Google Scholar 

  89. Lin WW, Ding K, Lin Z et al (2010) The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility. Cryst Eng Comm 13:3338–3341

    Google Scholar 

  90. Zhan ZB, Zhang JY, Zheng QH et al (2011) Strategy for preparing Al-doped ZnO Thin film with high mobility and high stability. Cryst Growth Des 11:21–25

    Google Scholar 

  91. Liu HF, Chua SJ, Hu GX et al (2007) Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. J Appl Phys 102:083529

    Google Scholar 

  92. Kim KH, Park KC, Ma DY (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81:7764–7772

    Google Scholar 

  93. Lany S, Zunger A (2007) Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys Rev Lett 98:045501

    Google Scholar 

  94. Lin BX, Fu ZX, Jia YB (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943–945

    Google Scholar 

  95. Schwartz DA, Gamelin DR (2004) Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115–2119

    Google Scholar 

  96. Pei ZL, Sun C, Tan MH et al (2001) Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films. J Appl Phys 90:3432–3436

    Google Scholar 

  97. Park CH, Zhang SB, Wei SH (2002) Origin of p-type doping difficulty in ZnO. Phys Rev B 66:073202

    Google Scholar 

  98. Lee EC, Kim YS, Jin YG et al (2001) Compensation mechanism for N acceptors in ZnO. Phys Rev B 64:085120

    Google Scholar 

  99. Zhang BY, Yao B, Li YF et al (2010) Investigation on the formation mechanism of p-type Li–N dual-doped ZnO. Appl Phys Lett 97:222101

    Google Scholar 

  100. Venkatesh S, Rao R (2010) Oxygen vacancy controlled tunable magnetic and electrical transport properties of (Li, Ni)-codoped ZnO thin films. Appl Phys Lett 96:232504

    Google Scholar 

  101. Zhang LQ, Zhang YZ, Ye ZZ et al (2012) The fabrication of Na doped p-type Zn1−x Mg x O films by pulsed laser deposition. Appl Phys A 106:191–196

    Google Scholar 

  102. Tang K, Gu SL, Wu KP et al (2010) Tellurium assisted realization of p-type N-doped ZnO. Appl Phys Lett 96:242101

    Google Scholar 

  103. Sanmyo M, Tomita Y, Kobayashi K (2003) Preparation of p-type ZnO films by doping of Be–N bonds. Chem Mater 15:819–821

    Google Scholar 

  104. Mohanta SK, Nakamura A, Temmyo J (2011) Nitrogen and copper doping in Mg x Zn1−x O films and their impact on p-type conductivity. J Appl Phys 110:013524

    Google Scholar 

  105. Janotti A, Snow E, Van de Walle CG (2009) A pathway to p-type wide-band-gap semiconductors. Appl Phys Lett 95:172109

    Google Scholar 

  106. Chu S, Zhao JZ, Zuo Z et al (2011) Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light emitting diode. J Appl Phys 109:123110

    Google Scholar 

  107. Friedrich F, Sieber I, Klimm C et al (2011) Sb-doping of ZnO: phase segregation and its impact on p-type doping. Appl Phys Lett 98:131902

    Google Scholar 

  108. Xiao ZY, Liu YC, Mu R et al (2008) Stability of p-type conductivity in nitrogen-doped ZnO thin film. Appl Phys Lett 92:052106

    Google Scholar 

  109. Chen XY, Zhang ZZ, Yao B et al (2011) Effect of compressive stress on stability of N-doped p-type ZnO. Appl Phys Lett 99:091908

    Google Scholar 

Download references

Acknowledgments

I thank my current and prior group members (not in order): Shunle Huang, Zhongchao Lin, Jiakui Huang, Bingxi Lin, Yishan Hou, Saiying Chen, Shicheng Lin, Guiyang Fang, Yongcang Ke, Qingqing Kang, Wei Li, Ruilong Wang, Shuhui Wu, and Guohong Wang. This work was supported by the National Natural Science Foundation of China (60736032, 20971123, 51002153, 21007070, 51102232, 61106004 and 21103191), the National Basic Research Program of China (2007CB936703), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJC2.YW.317, KJC2.YW.W01), the Fujian Natural Science Foundation of China (2005HZ1023, 2006F3140, 2007F3113, 2007HZ0005-3, 2010J01054, 2010J06006, 2010J05038 and 2012J05033), and the China National Funds for Distinguished Young Scientists (50625205). I would like to thank FJIRSM test center for years of support in facility and infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Huang.

Additional information

SPECIAL TOPIC: Wide Bandgap Semiconductor Materials and Devices

About this article

Cite this article

Huang, F., Lin, Z., Lin, W. et al. Research progress in ZnO single-crystal: growth, scientific understanding, and device applications. Chin. Sci. Bull. 59, 1235–1250 (2014). https://doi.org/10.1007/s11434-014-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0154-4

Keywords

Navigation