Skip to main content
Log in

A review of GaN-based optoelectronic devices on silicon substrate

  • Review
  • Optoelectronics & Laser
  • Published:
Chinese Science Bulletin

Abstract

Group III-nitride material system possesses some unique properties, such as large spectrum coverage from infrared to deep ultraviolet, wide energy band gap, high electron saturation velocity, high electrical breakdown field, and strong polarization effect, which enables the big family has a very wide application range from optoelectronic to power electronic area. Furthermore, the successful growth of GaN-related III-nitride material on large size silicon substrate enable the above applications easily realize the commercialization, because of the cost-effective device fabrication on the platform of Si-based integrated circuits. In this article, the progress and development of the GaN-based materials and light-emitting diodes grown on Si substrate were summarized, in which some key issues regarding to the material growth and device fabrication were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Calleja E, Sánchez-García MA, Sánchez FJ et al (1999) Growth of III-nitrides on Si (111) by molecular beam epitaxy doping, optical, and electrical properties. J Cryst Growth 201–202:296–317

    Google Scholar 

  2. Ohtani A, Stevens KS, Beresford R (1994) Microstructure and photoluminescence of GaN grown on Si (111) by plasma-assisted molecular beam epitaxy. Appl Phys Lett 65:61–63

    Google Scholar 

  3. Stevens KS, Ohtani A, Kinniburgh M et al (1994) Microstructure of AlN on Si (111) grown by plasma-assisted molecular beam epitaxy. Appl Phys Lett 65:321–323

    Google Scholar 

  4. Ishikawa H, Yamamoto K, Egawa T et al (1998) Thermal stability of GaN on (111) Si substrate. J Cryst Growth 189–190:178–182

    Google Scholar 

  5. Krost A, Dadgar A (2002) GaN-based optoelectronics on silicon substrates. Mater Sci Eng B 93:77–84

    Google Scholar 

  6. Ishikawa H, Zhao GY, Nakada N (1999) GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn J Appl Phys 38:L492–L494

    Google Scholar 

  7. Zamir S, Meyler B, Zolotoyabko E et al (2000) The effect of AlN buffer layer on GaN grown on (111)-oriented Si substrates by MOCVD. J Cryst Growth 218:181–190

    Google Scholar 

  8. Lahrèche H, Venneguès P, Tottereau O et al (2000) Optimisation of AlN and GaN growth by metalorganic vapour-phase epitaxy (MOVPE) on Si (111). J Cryst Growth 217:13–25

    Google Scholar 

  9. Dadgar A, Christen J, Riemann T et al (2001) Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si (111): impact of an AlGaN/GaN multilayer. Appl Phys Lett 78:2211–2213

    Google Scholar 

  10. Dadgar A, Poschenrieder M, Bläsing J et al (2002) Thick, crack-free blue light-emitting diodes on Si (111) using low-temperature AlN interlayers and in situ Si x N y masking. Appl Phys Lett 80:3670–3672

    Google Scholar 

  11. Poschenrieder M, Schulze F, Bläsing J et al (2002) Bright blue to orange photoluminescence emission from high-quality InGaN/GaN multiple-quantum-wells on Si (111) substrates. Appl Phys Lett 81:1591–1593

    Google Scholar 

  12. Li J, Lin JY, Jiang HX (2006) Growth of III-nitride photonic structures on large area silicon substrates. Appl Phys Lett 88:171909

    Google Scholar 

  13. Lin KL, Chang EY, Huang JC et al (2008) MOVPE high quality GaN film grown on Si (111) substrates using a multilayer AlN buffer. Phys Stat Sol (c) 5:1536–1538

    Google Scholar 

  14. Marchand H, Zhao L, Zhang N et al (2001) Metalorganic chemical vapor deposition of GaN on Si (111): stress control and application to field-effect transistors. J Appl Phys 89:7846–7851

    Google Scholar 

  15. Zhang BS, Wu M, Shen XM et al (2003) Influence of high-temperature AIN buffer thickness on the properties of GaN grown on Si (111). J Cryst Growth 258:34–40

    Google Scholar 

  16. Kelly MK, Vaudo RP, Phanse VM et al (1999) Large free-standing GaN substrate by hydride vapor phase epitaxy and laser-induced liffoff. Jpn J Appl Phys 38:L217–L219

    Google Scholar 

  17. Luo W, Wang X, Guo L et al (2008) Influence of AlN buffer layer thickness on the properties of GaN epilayer on Si (111) by MOCVD. Microelectron J 39:1710–1713

    Google Scholar 

  18. Yang JH, Kang SM, Dinh DV et al (2009) Influence of AlN buffer layer thickness and deposition methods on GaN epitaxial growth. Thin Solid Films 517:5057–5060

    Google Scholar 

  19. Wei J, Zhang B, Wang G et al (2010) Vertical GaN-based light-emitting diodes structure on Si (111) substrate with through-holes. Jpn J Appl Phys 49:072104

    Google Scholar 

  20. Li T, Dadgar A, Mastro M (2010) III-V compound semiconductors integration with silicon based microelectronics. CRC Press, Boca Raton, pp 229–230

    Google Scholar 

  21. Nikishin SA, Faleev NN, Antipov VG et al (1999) High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia. Appl Phys Lett 75:2073–2075

    Google Scholar 

  22. Sánchez-García MA, Calleja E, Monroy E et al (1998) The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AIN-layers grown by molecular beam epitaxy on Si (111). J Cryst Growth 183:23–30

    Google Scholar 

  23. Yang JW, Lunev A, Simin G et al (2000) Selective area deposited blue GaN–InGaN multiple-quantum well light emitting diodes over silicon substrates. Appl Phys Lett 76:273–275

    Google Scholar 

  24. Chen P, Zhang R, Zhao ZM et al (2001) Growth of high quality GaN layers with AlN buffer on Si (111) substrates. J Cryst Growth 225:150–154

    Google Scholar 

  25. Dadgar A, Poschenrieder M, Blasing J et al (2003) MOVPE growth of GaN on Si (111) substrates. J Cryst Growth 248:556–562

    Google Scholar 

  26. Lahrèche H, Vennéguès P, Beaumont B et al (1999) Growth of high-quality GaN by low-pressure metal-organic vapour phase epitaxy (LP-MOVPE) from 3D islands and lateral overgrowth. J Cryst Growth 205:245–252

    Google Scholar 

  27. Naoi Y, Tada T, Li H et al (2003) Growth and evaluation of GaN with SiN interlayer by MOCVD. Phys Stat Sol (c) 0:2077–2081

    Google Scholar 

  28. Dadgar A, Poschenrieder M, Reiher A et al (2003) Reduction of stress at the initial stages of GaN growth on Si (111). Appl Phys Lett 82:28–30

    Google Scholar 

  29. Dadgar A, Strittmatter A, Bläsing J et al (2003) Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon. Phys Stat Sol (c) 0:1583–1606

    Google Scholar 

  30. Cheng K, Leys M, Degroote S et al (2008) High quality GaN grown on silicon (111) using a Si x N y interlayer by metal-organic vapor phase epitaxy. Appl Phys Lett 92:192111

    Google Scholar 

  31. Dadgar A, Poschenrieder M, Contreras O et al (2002) Bright, crack-free InGaN/GaN light emitters on Si (111). Phys Stat Sol A 192:308–313

    Google Scholar 

  32. Krost A, Dadgar A (2002) GaN-based devices on Si. Phys Stat Sol A 194:361–375

    Google Scholar 

  33. Feltin E, Beaumont B, Laügt M et al (2001) Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl Phys Lett 79:3230–3232

    Google Scholar 

  34. Ubukata A, Ikenaga K, Akutsu N et al (2007) GaN growth on 150-mm-diameter (111) Si substrates. J Cryst Growth 298:198–201

    Google Scholar 

  35. Wang HM, Zhang JP, Chen CQ et al (2002) AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl Phys Lett 81:604–606

    Google Scholar 

  36. Zhang JP, Wang HM, Gaevski ME et al (2002) Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl Phys Lett 80:3542–3544

    Google Scholar 

  37. Raghavan S, Redwing J (2005) Growth stresses and cracking in GaN films on (111) Si grown by metalorganic chemical vapor deposition. II. Graded AlGaN buffer layers. J Appl Phys 98:023515

    Google Scholar 

  38. Raghavan S, Weng X, Dickey E et al (2006) Correlation of growth stress and structural evolution during metalorganic chemical vapor deposition of GaN on (111) Si. Appl Phys Lett 88:041904

    Google Scholar 

  39. Able A, Wegscheider W, Engl K et al (2005) Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers. J Cryst Growth 276:415–418

    Google Scholar 

  40. Cheng K, Leys M, Degroote S et al (2006) Flat GaN epitaxial layers grown on Si (111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers. J Electron Mater 35:592–598

    Google Scholar 

  41. Yoshida S, Katoh S, Takehara H et al (2006) Investigation of buffer structures for the growth of a high quality AlGaN/GaN hetero-structure with a high power operation FET on Si substrate using MOCVD. Phys Stat Sol A 203:1739–1743

    Google Scholar 

  42. Mo C, Fang W, Pu Y et al (2005) Growth and characterization of InGaN blue LED structure on Si (111) by MOCVD. J Cryst Growth 285:312–317

    Google Scholar 

  43. Huang CC, Chang SJ, Chuang RW et al (2010) GaN grown on Si (111) with step-graded AlGaN intermediate layers. Appl Surf Sci 256:6367–6370

    Google Scholar 

  44. Sugahara T, Lee JS, Ohtsuka K (2004) Role of AlN/GaN multilayer in crack-free GaN layer growth on 5′′ Si (111) substrate. Jpn J Appl Phys 43:L1595–L1597

    Google Scholar 

  45. Saengkaew P, Dadgar A, Blaesing J et al (2009) Low-temperature/high-temperature AlN superlattice buffer layers for high-quality Al x Ga1−x N on Si (111). J Cryst Growth 311:3742–3748

    Google Scholar 

  46. Kim JY, Tak Y, Hong HG et al (2011) Highly efficient InGaN/GaN blue LEDs on large diameter Si (111) substrates comparable to those on sapphire. Proc SPIE 8123:81230A

    Google Scholar 

  47. Dadgar A, Bläsing J, Diez A et al (2000) Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn J Appl Phys 39:1183–1185

    Google Scholar 

  48. Park SE, Lim SM, Lee CR et al (2003) Influence of SiN buffer layer in GaN epilayers. J Cryst Growth 249:487–491

    Google Scholar 

  49. Feltin E, Beaumont B, Vennéguès P et al (2003) Epitaxial lateral overgrowth of GaN on Si (111). J Appl Phys 93:182–185

    Google Scholar 

  50. Tripathy S, Lin VKX, Teo SL et al (2007) InGaN/GaN light emitting diodes on nanoscale silicon on insulator. Appl Phys Lett 91:231109

    Google Scholar 

  51. Zhu D, McAleese C, McLaughlin KK et al (2009) GaN-based LEDs grown on 6-inch diameter Si (111) substrates by MOVPE. Proc SPIE 7231:7231181

    Google Scholar 

  52. Dadgar A, Hums C, Diez A et al (2006) Growth of blue GaN LED structures on 150-mm Si (111). J Cryst Growth 297:279–282

    Google Scholar 

  53. Osram’s GaN LED chips on 150 mm silicon enter pilot stage. Semiconductor today, news, 2012. http://www.semiconductor-today.com/news_items/2012/JAN/OSRAM_130112.html

  54. Toshiba invests in Bridgelux to boost GaN-on-Si LED lighting. Semiconductor today, news, 2012. http://www.semiconductor-today.com/news_items/2012/MAY/BRIDGELUX_100512.html

  55. Ishida M, Uemoto Y, Ueda T et al (2010) GaN power switching devices. The 2010 international power electronics conference, Sapporo, pp 1014–1017

  56. Boyd AR, Degroote S, Leys M et al (2009) Growth of GaN/AlGaN on 200 mm diameter silicon (111) wafers by MOCVD. Phys Stat Sol (c) 6:S1045–S1048

    Google Scholar 

  57. Dadgar A, Alam A, Riemann T et al (2001) Crack-free InGaN/GaN light emitters on Si (111). Phys Stat Sol A 188:155–158

    Google Scholar 

  58. Selvaraj SL, Suzue T, Egawa T (2009) Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron Device Lett 30:587–589

    Google Scholar 

  59. Selvaraj SL, Suzue T, Egawa T (2009) Enhancing the breakdown voltage by growing 9 μm thick AlGaN/GaN HEMTs on 4 inch silicon. Device research conference, University Park, PA, pp 283–284

  60. Zhu D, McAleese C, Häberlen M et al (2010) InGaN/GaN LEDs grown on Si (111): dependence of device performance on threading dislocation density and emission wavelength. Phys Stat Sol (c) 7:2168–2170

    Google Scholar 

  61. Dadgar A, Hempel T, Bläsing J et al (2011) Improving GaN-on-silicon properties for GaN device epitaxy. Phys Stat Sol (c) 8:1503–1508

    Google Scholar 

  62. Tungare M, Leathersich JM, Tripathi N et al (2011) Crack-free iii-nitride structures (>3.5 μm) on silicon. Materials research society spring meeting, San Francisco, 1324:9–15

  63. Schenk HPD, Frayssinet E, Bavard A et al (2011) Growth of thick, continuous GaN layers on 4-in. Si substrates by metalorganic chemical vapor deposition. J Cryst Growth 314:85–91

    Google Scholar 

  64. Fritze S, Drechsel P, Stauss P et al (2012) Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy. J Appl Phys 111:124505

    Google Scholar 

  65. Amano H, Iwaya M, Kashima T et al (1998) Stress and defect control in GaN using low temperature interlayers. Jpn J Appl Phys 37:1540–1542

    Google Scholar 

  66. Bläsing J, Reiher A, Dadgar A et al (2002) The origin of stress reduction by low-temperature AlN interlayers. Appl Phys Lett 81:2722–2724

    Google Scholar 

  67. Reiher A, Blasing J, Dadgar A et al (2003) Efficient stress relief in GaN heteroepitaxy on Si (111) using low-temperature AlN interlayers. J Cryst Growth 248:563–567

    Google Scholar 

  68. Krost A, Dadgar A, Strassburger G et al (2003) GaN-based epitaxy on silicon: stress measurements. Phys Stat Sol A 200:26–35

    Google Scholar 

  69. Raghavan S, Redwing JM (2004) In situ stress measurements during the MOCVD growth of AlN buffer layers on (111) Si substrates. J Cryst Growth 261:294–300

    Google Scholar 

  70. Feltin E, Beaumont B, Laügt M et al (2001) Crack-free thick GaN layers on silicon (111) by metalorganic vapor phase epitaxy. Phys Stat Sol A 188:531–535

    Google Scholar 

  71. Feltin E, Carlin JF, Dorsaz J et al (2006) Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications. Appl Phys Lett 88:051108

    Google Scholar 

  72. Wong WS, Sands T, Cheung NW et al (1999) Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl Phys Lett 75:1360–1362

    Google Scholar 

  73. Jang SH, Lee CR (2003) High-quality GaN/Si (111) epitaxial layers grown with various Al0.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD. J Cryst Growth 253:64–70

    Google Scholar 

  74. Kim DW, Lee CR (2006) N-type doping of GaN/Si (111) using Al0.2Ga0.8N/ALN composite buffer layer and Al0.2Ga0.8N/GaN superlattice. J Cryst Growth 286:235–239

    Google Scholar 

  75. Einfeldt S, Heinke H, Kirchner V et al (2001) Strain relaxation in AlGaN/GaN superlattices grown on GaN. J Appl Phys 89:2160–2167

    Google Scholar 

  76. Zhang B, Egawa T, Ishikawa H et al (2003) High-bright InGaN multiple-quantum-well blue light-emitting diodes on Si (111) using AlN/GaN multilayers with a thin AlN/AlGaN buffer layer. Jpn J Appl Phys 42:L226–L228

    Google Scholar 

  77. Egawa T, Zhang B, Ishikawa H (2005) High performance of InGaN LEDs on (111) silicon substrates grown by MOCVD. IEEE Electron Device Lett 26:169–171

    Google Scholar 

  78. Zhang B, Egawa T, Ishikawa H et al (2005) Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si (111) substrate onto copper carrier by selective lift-off. Appl Phys Lett 86:071113

    Google Scholar 

  79. Kim JY, Tak Y, Kim J et al (2012) Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate. Proc SPIE 8262:82621D

    Google Scholar 

  80. Ishikawa H, Zhao GY, Nakada N et al (1999) High-quality GaN on Si substrate using AlGaN/AlN intermediate layer. Phys Stat Sol A 176:599–602

    Google Scholar 

  81. Zhang B, Egawa T, Ishikawa H et al (2001) InGaN multiple-quantum-well light emitting diodes on Si (111) substrates. Phys Stat Sol A 188:151–154

    Google Scholar 

  82. Kim MH, Do YG, Kang HC et al (2001) Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl Phys Lett 79:2713

    Google Scholar 

  83. Honda Y, Kuroiwa Y, Yamaguchi M et al (2002) Growth of GaN free from cracks on a (111) Si substrate by selective metalorganic vapor-phase epitaxy. Appl Phys Lett 80:222–224

    Google Scholar 

  84. Zhang B, Liang H, Wang Y et al (2007) High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates. J Cryst Growth 298:725–730

    Google Scholar 

  85. Zang KY, Wang YD, Chua SJ et al (2005) Nanoscale lateral epitaxial overgrowth of GaN on Si (111). Appl Phys Lett 87:193106

    Google Scholar 

  86. Luo R, Xiang P, Liu M et al (2011) Influence of V/III ratio of low temperature grown AlN interlayer on the growth of GaN on Si (111) substrate. Jpn J Appl Phys 50:105501

    Google Scholar 

  87. Luo R, Rao W, Chen T et al (2012) Vertical InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with through-holes. Jpn J Appl Phys 51:012101

    Google Scholar 

  88. Sawaki N (2008) Selective MOVPE of III-nitrides and device fabrication on an Si substrate. Proc SPIE 7279:727902

    Google Scholar 

  89. Arslan E, Ozturk MK, Teke A et al (2008) Buffer optimization for crack-free GaN epitaxial layers grown on Si (111) substrate by MOCVD. J Phys D Appl Phys 41:155317

    Google Scholar 

  90. Guha S, Nestor, Bojarczuk A (1998) Ultraviolet and violet GaN light emitting diodes on silicon. Appl Phys Lett 4:415–417

    Google Scholar 

  91. Tran CA, Osinski A, Karlicek RF et al (1999) Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl Phys Lett 75:1494

    Google Scholar 

  92. Egawa T, Zhang B, Nishikawa N et al (2002) InGaN multiple-quantum-well green light-emitting diodes on Si grown by metalorganic chemical vapor deposition. J Appl Phys 91:528–530

    Google Scholar 

  93. Ishikawa H, Zhang B, Egawa T et al (2003) Valence-band discontinuity at the AlN/Si interface. Jpn J Appl Phys 42:6413–6414

    Google Scholar 

  94. Badylevich M, Shamuilia S, Afanasév VV et al (2008) Electronic structure of the interface of aluminum nitride with Si (100). J Appl Phys 104:093713

    Google Scholar 

  95. Semond F, Antoine VN, Schnell N et al (2001) Growth by molecular beam epitaxy and optical properties of a ten-period AlGaN/AlN distributed Bragg reflector on (111) Si. Phys Stat Sol A 183:163–167

    Google Scholar 

  96. Ishikawa H, Asano K, Zhang B et al (2004) Improved characteristics of GaN-based light-emitting diodes by distributed Bragg reflector grown on Si. Phys Stat Sol A 201:2653–2657

    Google Scholar 

  97. Ishikawa H, Zhang B, Asano K et al (2004) Characterization of GaInN light-emitting diodes with distributed Bragg reflector grown on Si. J Cryst Growth 272:322–326

    Google Scholar 

  98. Krost A, Berger C, Bläsing J et al (2010) Strain evaluation in AlInN/GaN Bragg mirrors by in situ curvature measurements and ex situ X-ray grazing incidence and transmission scattering. Appl Phys Lett 97:181105

    Google Scholar 

  99. Ishikawa H, Jimbo T, Egawa T (2008) GaInN light emitting diodes with AlInN/GaN distributed Bragg reflector on Si. Phys Stat Sol C 5:2086–2088

    Google Scholar 

  100. Zhao Y, Wang X, Fan B et al (2009) A numerical study of the emission enhancement of light emitting diodes with an interfacial photonic crystal resonance reflector. Semicond Sci Tech 24:055013

    Google Scholar 

  101. Lin VKX, Tripathy S, Teo SL et al (2010) Luminescence properties of photonic crystal InGaN/GaN light emitting layers on silicon-on-insulator. Electrochem Solid-State Lett 13:H343–H345

    Google Scholar 

  102. Kelly MK, Ambacher O, Dimitrov R et al (1996) Optical process for lift off of group III-nitride films. Phys Stat Sol A 159:R3–R4

    Google Scholar 

  103. Wong WS, Sands T, Cheung NW et al (2000) InxGa1−xN light emitting diodes on Si substrates fabricated by Pd–In metal bonding and laser lift-off. Appl Phys Lett 77:2822–2824

    Google Scholar 

  104. Tan BS, Yuan S, Kang XJ (2004) Performance enhancement of InGaN light-emitting diodes by laser lift-off and transfer from sapphire to copper substrate. Appl Phys Lett 84:2757–2759

    Google Scholar 

  105. Wong KM, Zou XB, Chen P et al (2010) Transfer of GaN-based light-emitting diodes from silicon growth substrate to copper. IEEE Electron Device Lett 31:132–134

    Google Scholar 

  106. Chen T, Wang Y, Xiang P et al (2012) Crack-free InGaN multiple quantum wells light-emitting diodes structures transferred from Si (111) substrate onto electroplating copper submount with embedded electrodes. Appl Phys Lett 100:241112

    Google Scholar 

  107. Xiong C, Jiang F, Fang W et al (2006) Different properties of GaN-based LED grown on Si (111) and transferred onto new substrate. Sci China Ser E Technol Sci 49:313–321

    Google Scholar 

  108. Lau KM, Wong KM, Zou XB et al (2011) Performance improvement of GaN-based light-emitting diodes grown on patterned Si substrate transferred to copper. Opt Express 19:A958–A961

    Google Scholar 

  109. Dolmanan SB, Teo SL, Lin VK et al (2011) Thin-film InGaN/GaN vertical light emitting diodes using GaN on silicon-on-insulator substrates. Electrochem Solid State Lett 14:H460–H463

    Google Scholar 

  110. Xiong C, Jiang F, Fang W et al (2007) The characteristics of GaN-based blue LED on Si substrate. J Lumin 122–123:185–187

    Google Scholar 

  111. Lee SJ, Kim KH, Ju JW et al (2011) High-brightness GaN-based light-emitting diodes on Si using wafer bonding technology. Appl Phys Exp 4:066501

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2010CB923200 and 2011CB301903), the National High Technology Research and Development Program of China (2011AA03A101), the National Natural Science Foundation of China (61274039 and 51177175), Ph.D. Programs Foundation of Ministry of Education of China (20110171110021), and the Foundation of the Key Technologies R&D Program of Guangdong Province (2010A081002005). Authors also would like to give thanks to their students: Peng Xiang, Minggang Liu, Yibin Yang, Weijie Chen, Guoheng Hu, Yiqiang Ni, Fan Yang, Yao Yao, and Zhiyuan He for their helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baijun Zhang.

Additional information

SPECIAL TOPIC: Wide Bandgap Semiconductor Materials and Devices

About this article

Cite this article

Zhang, B., Liu, Y. A review of GaN-based optoelectronic devices on silicon substrate. Chin. Sci. Bull. 59, 1251–1275 (2014). https://doi.org/10.1007/s11434-014-0169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0169-x

Keywords

Navigation