Skip to main content
Log in

Applying Gaussian quantum discord to quantum key distribution

  • Invited Article
  • Quantum Information
  • Published:
Chinese Science Bulletin

Abstract

In this paper, we theoretically prove that the Gaussian quantum discord state of optical field can be used to complete continuous variable (CV) quantum key distribution (QKD). The calculation shows that secret key can be distilled with a Gaussian quantum discord state against entangling cloner attack. Secret key rate is increased with the increasing of quantum discord for CV QKD with the Gaussian quantum discord state. Although the calculated results point out that secret key rate using the Gaussian quantum discord state is lower than that using squeezed state and coherent state at the same energy level, we demonstrate that the Gaussian quantum discord, which only involving quantum correlation without the existence of entanglement, may provide a new resource for realizing CV QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ollivier H, Zurek WH (2001) Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett 88:017901

    Article  Google Scholar 

  2. Modi K, Brodutch A, Cable H et al (2012) The classical-quantum boundary for correlations: discord and related measures. Rev Mod Phys 84:1655–1707

    Article  Google Scholar 

  3. Aaronson B, Franco RL, Compagno G et al (2013) Hierarchy and dynamics of trace distance correlations. New J Phys 18:093022

    Article  Google Scholar 

  4. Knill E, Laflamme R (1998) Power of one bit of quantum information. Phys Rev Lett 81:5672–5675

    Article  Google Scholar 

  5. Ryan CA, Emerson J, Poulin D et al (2005) Characterization of complex quantum dynamics with a scalable NMR information processor. Phys Rev Lett 95:250502

    Article  Google Scholar 

  6. Lanyon BP, Barbieri M, Almeida MP et al (2008) Experimental quantum computing without entanglement. Phys Rev Lett 101:200501

    Article  Google Scholar 

  7. Giorda P, Paris MGA (2010) Gaussian quantum discord. Phys Rev Lett 105:020503

    Article  Google Scholar 

  8. Adesso G, Datta A (2010) Quantum versus classical correlations in Gaussian states. Phys Rev Lett 105:030501

    Article  Google Scholar 

  9. Gu M, Chrzanowski HM, Assad SM et al (2012) Observing the operational significance of discord consumption. Nat Phys 8:671–675

    Article  Google Scholar 

  10. Blandino R, Genoni MG, Etesse J et al (2012) Homodyne estimation of Gaussian quantum discord. Phys Rev Lett 109:180402

    Article  Google Scholar 

  11. Madsen LS, Berni A, Lassen M et al (2012) Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys Rev Lett 109:030402

    Article  Google Scholar 

  12. Weedbrook C, Pirandola S, García-Patrón R et al (2012) Gaussian quantum information. Rev Mod Phys 84:621–669

    Article  Google Scholar 

  13. Grosshans F, Cerf NJ, Wenger J et al (2003) Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf Comput 3:535–552

    Google Scholar 

  14. Iblisdir S, Van Assche G, Cerf NJ (2004) Security of quantum key distribution with coherent states and homodyne detection. Phys Rev Lett 3:170502

    Article  Google Scholar 

  15. Grosshans F (2005) Collective attacks and unconditional security in continuous variable quantum key distribution. Phys Rev Lett 94:020504

    Article  Google Scholar 

  16. Navascués M, Acín A (2005) Security bounds for continuous variables quantum key distribution. Phys Rev Lett 94:020505

    Article  Google Scholar 

  17. Renner R, Cirac JI (2009) A de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys Rev Lett 102:110504

    Article  Google Scholar 

  18. Leverrier A, Grangier P (2009) Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys Rev Lett 102:180504

    Article  Google Scholar 

  19. Weedbrook C, Pirandola S, Ralph TC (2012) Continuous-variable quantum key distribution using thermal states. Phys Rev A 86:022318

    Article  Google Scholar 

  20. Pirandola S. Quantum discord as a resource for quantum cryptography. arxiv:quant-ph/1309.2446

  21. Simon R (2000) Peres–Horodecki separability criterion for continuous variable systems. Phys Rev Lett 84:2726–2729

    Article  Google Scholar 

  22. Werner RF, Wolf MM (2001) Bound entangled Gaussian states. Phys Rev Lett 86:3658

    Article  Google Scholar 

  23. Serafini A, Illuminati F, De Siena S (2004) Symplectic invariants, entropic measures and correlations of Gaussian states. J Phys B 37:L21

    Google Scholar 

  24. Adesso G, Serafini A, Illuminati F (2004) Extremal entanglement and mixedness in continuous variable systems. Phys Rev A 70:022318

    Article  Google Scholar 

  25. Navascués M, Grosshans F, Acín A (2006) Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys Rev Lett 97:190502

    Article  Google Scholar 

  26. García-Patrón R, Cerf NJ (2006) Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys Rev Lett 97:190503

    Article  Google Scholar 

  27. Pirandola S, Braunstein SL, Lloyd S (2008) Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys Rev Lett 101:200504

    Article  Google Scholar 

  28. Namiki R, Hirano T (2004) Practical limitation for continuous-variable quantum cryptography using coherent states. Phys Rev Lett 92:117901

    Article  Google Scholar 

  29. Brassard G, Salavail L (1993) Secret-key reconciliation by public discussion. In: Helleseth T (ed) Advances in Cryptology—Eurocrypt’93 Lecture Notes in Computer Science. Springer, New York, pp 410–423

  30. Bennett CH, Brassard G, Crépeau C et al (1995) Generalized privacy amplification. IEEE Trans Inf Theor 41:1915–1923

    Article  Google Scholar 

  31. Cachin C, Maurer UM (1997) Linking information reconciliation and privacy amplification. J Cryptol 10:97–110

    Article  Google Scholar 

  32. Holevo AS, Sohma M, Hirota O (1999) Capacity of quantum Gaussian channels. Phys Rev A 59:1820–1828

    Article  Google Scholar 

  33. Grangier P, Levenson JA, Poizat JP (1998) Quantum non-Demolition measurements in optics. Nature 396:537–542

    Article  Google Scholar 

  34. Eisert J, Scheel S, Plenio MB (2002) Distilling Gaussian states with Gaussian operations is impossible. Phys Rev Lett 89:137903

    Article  Google Scholar 

  35. Fiurášek J (2002) Gaussian transformations and distillation of entangled Gaussian states. Phys Rev Lett 89:137904

    Article  Google Scholar 

  36. Grosshans F, Grangier P (2002) Continuous variable quantum cryptography using coherent states. Phys Rev Lett 88:057902

    Article  Google Scholar 

  37. Grosshans F, Van Assche G, Wenger J et al (2003) Quantum key distribution using gaussian-modulated coherent states. Nature 421:238–241

    Article  Google Scholar 

  38. Lu ZX, Yu L, Li K et al (2010) Reverse reconciliation for continuous variable quantum key distribution. Sci China Phys Mech Astron 53:100–105

    Article  Google Scholar 

  39. Silberhorn C, Ralph T C, Lütkenhaus N et al (2002) Continuous variable quantum cryptography: beating the 3 dB loss limit. Phys Rev Lett 89:167901

    Article  Google Scholar 

  40. Weedbrook C, Lance AM, Bowen WP et al (2004) Quantum cryptography without switching. Phys Rev Lett 93:170504

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks for helpful discussion with Prof. Changde Xie, Kunchi Peng, Jing Zhang, and Xiaojun Jia. This work was supported by the National Basic Research Program of China (2010CB923103), the National Natural Science Foundation of China (11174188, 61121064), Shanxi Scholarship Council of China (2012-010) and Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Su.

About this article

Cite this article

Su, X. Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59, 1083–1090 (2014). https://doi.org/10.1007/s11434-014-0193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0193-x

Keywords

Navigation