Skip to main content
Log in

Recent progress in thermoelectric materials

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Direct conversion of heat into electricity through advanced thermoelectric (TE) materials has been one of the most attractive solutions to the severe environmental and energy issues facing humanity. In recent years, great progress has been made in improving their dimensionless figure of merit (ZT), which determines the conversion efficiency of TE devices. ZT is related to three “interlocked” factors—the Seebeck coefficient, electrical conductivity, and thermal conductivity. These three factors are interdependent in bulk TE materials, and altering one changes the other two. The difficulty in simultaneously optimizing them caused TE research to stagnate, until great reductions in thermal conductivity were both theoretically and experimentally proven in nanomaterials in 1993. In this review, we first introduce some TE fundamentals and then review the most recently improvements in ZT in different kinds of inorganic and organic TE materials, which is followed by an investigation of the outlook for new directions in TE technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461

    Google Scholar 

  2. Shakouri A, Zebarjadi M, Volz S (eds) (2009) Thermal nanosystems and nanomaterials. Springer, Heidelberg

    Google Scholar 

  3. Kraemer D, Poudel B, Feng HP et al (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10:532–538

    Google Scholar 

  4. Loffe AF (1960) Physics of semiconductors. Academic Press, New York

    Google Scholar 

  5. Majumdar A (2004) Thermoelectricity in semiconductor nanostructures. Science 303:777–778

    Google Scholar 

  6. Pichanusakorn P, Bandaru P (2010) Nanostructured thermoelectrics. Mater Sci Eng 67:19–63

    Google Scholar 

  7. Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431

    Google Scholar 

  8. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Google Scholar 

  9. Heremans JP, Jovovic V, Toberer ES et al (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321:554–557

    Google Scholar 

  10. Liang WJ, Hochbaum AI, Fardy M et al (2009) Field-effect modulation of Seebeck coefficient in single PbSe nanowires. Nano Lett 9:1689–1693

    Google Scholar 

  11. Kittel C (2005) Introduction to solid state physics. Chemical Industry Press, Beijing

    Google Scholar 

  12. Slack GA, Rowe DM, Boca R (eds) (1995) Handbook of thermoelectrics. CRC Press, Boca Raton

    Google Scholar 

  13. Hicks LD, Dresselhaus M (1993) Figure of merit of a one-dimensional conductor. Phys Rev B 47:16631–16634

    Google Scholar 

  14. Hicks LD, Dresselhaus M (1993) Effect of quantum well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Google Scholar 

  15. Harman TC, Walsh MP, LaForge BE et al (2005) Nanostructured thermoelectric materials. J Electron Mater 34:L19–L22

    Google Scholar 

  16. He J, Liu YF (2011) Oxide thermoelectrics: the challenges, progress, and outlook. J Mater Res 26:1762–1772

    Google Scholar 

  17. Bubnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5:9345–9362

    Google Scholar 

  18. Rowe DM (1986) Recent developments in thermoelectric materials. Appl Energy 24:139–162

    Google Scholar 

  19. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639

    Google Scholar 

  20. Liu WS, Yan X, Chen G et al (2012) Recent advances in thermoelectric nanocomposites. Nano Energy 1:42–56

    Google Scholar 

  21. Li Z, Sun Q, Yao XD et al (2012) Semiconductor nanowires for thermoelectrics. J Mater Chem 22:22821–22831

    Google Scholar 

  22. Li Z, Kornowski A, Myalitsin A et al (2008) Formation and function of bismuth nanocatalysts for the solution–liquid–solid synthesis of CdSe nanowires. Small 4:1698–1702

    Google Scholar 

  23. Li Z, Kurtulus Ö, Nan F et al (2009) Controlled synthesis of CdSe nanowires by solution–liquid–solid method. Adv Funct Mater 19:3650–3661

    Google Scholar 

  24. Li Z, Cheng LN, Sun Q et al (2010) Diluted magnetic semiconductor nanowires prepared by the solution–liquid–solid method. Angew Chem Int Ed 49:2777–2781

    Google Scholar 

  25. Li Z, Ma X, Sun Q et al (2010) Synthesis and characterization of colloidal core–shell semiconductor nanowires. Eur J Inorg Chem 27:4325–4331

    Google Scholar 

  26. Li Z, Du AJ, Sun Q et al (2011) Cobalt-doped cadmium selenide colloidal nanowires. Chem Commun 47:11894–11896

    Google Scholar 

  27. Li Z, Du AJ, Sun Q et al (2012) Field-effect transistors fabricated from diluted magnetic semiconductor colloidal nanowires. Nanoscale 4:1263–1266

    Google Scholar 

  28. Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651

    Google Scholar 

  29. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49:3557–3566

    Google Scholar 

  30. Zhang GQ, Finefrock S, Liang DX et al (2011) Semiconductor nanostructure-based photovoltaic solar cells. Nanoscale 3:2430–2443

    Google Scholar 

  31. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Google Scholar 

  32. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Google Scholar 

  33. Li H, Wang ZX, Chen LQ et al (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Google Scholar 

  34. Ikoma K, Munekiyo M, Furuya K et al (1999) Thermoelectric generator for gasoline engine vehicles using Bi2Te3 modules. J Jpn Inst Met 63:1475–1478

    Google Scholar 

  35. Lv HY, Liu HJ, Shi J et al (2013) Optimized thermoelectric performance of Bi2Te3 nanowires. J Mater Chem A 1:6831–6838

    Google Scholar 

  36. Tang XF, Xie WJ, Li H et al (2007) Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl Phys Lett 90:012102

    Google Scholar 

  37. Venkatasubramanian R, Siivola E, Colpitts T et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Google Scholar 

  38. Harman TC, Taylor PJ, Walsh MP et al (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Google Scholar 

  39. Lalonde A, Pei YZ, Snyder GJ (2011) Reevaluation of PbTe1–x I x as high performance n-type thermoelectric material. Energy Environ Sci 4:2090–2096

    Google Scholar 

  40. Pei YZ, Lalonde A, Iwanaga S et al (2011) High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci 4:2085–2089

    Google Scholar 

  41. Pei YZ, Shi XY, Lalonde A et al (2011) Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473:66–69

    Google Scholar 

  42. He JQ, Sootsman JR, Girard SN et al (2010) On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. J Am Chem Soc 132:8669–8675

    Google Scholar 

  43. Hsu KF, Loo S, Guo F et al (2004) Cubic AgPb m SbTe2+m : bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Google Scholar 

  44. Poudeu PFP, D’Angel JJ, Downey AD et al (2006) High thermoelectric figure of merit and nanostructuring in bulk p-type Na1−x PbmSbyTe m+2. Angew Chem Int Ed 45:3835–3839

    Google Scholar 

  45. Biswas K, He JQ, Zhang QC et al (2011) Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat Chem 3:160–166

    Google Scholar 

  46. Sootsman JR, Kong HJ, Uher C et al (2008) Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew Chem Int Ed 47:8618–8622

    Google Scholar 

  47. Pei YZ, Lensch-Falk J, Tobber ES et al (2011) High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater 21:241–249

    Google Scholar 

  48. Ahn K, Han MK, He JQ et al (2010) Exploring resonance levels and nanostructuring in the PbTe–CdTe system and enhancement of the thermoelectric figure of merit. J Am Chem Soc 132:5227–5235

    Google Scholar 

  49. Androulakis J, Lin CH, Kong HJ et al (2007) Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1−x Sn x Te–PbS. J Am Chem Soc 129:9780–9788

    Google Scholar 

  50. Kanishka B, He JQ, Ivan DB (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418

    Google Scholar 

  51. Ibanez M, Zamani R, Gorsse S et al (2013) Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: pbTe–PbS thermoelectric properties. ACS Nano 7:2573–2586

    Google Scholar 

  52. Rogacheva EI, Tavrina TV, Nashchekina ON et al (2002) Quantum size effects in PbSe quantum wells. Appl Phys Lett 80:2690–2692

    Google Scholar 

  53. Wang H, Pei YZ, Lalonde AD et al (2011) Heavily doped p-type PbSe with high thermoelectric performance: an alternative for PbTe. Adv Mater 23:1366–1370

    Google Scholar 

  54. Zhang QY, Wang H, Liu WS et al (2012) Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci 5:5246–5251

    Google Scholar 

  55. Johnsen S, He JQ, Androulakis J et al (2011) Nanostructures boost the thermoelectric performance of PbS. J Am Chem Soc 133:3460–3470

    Google Scholar 

  56. Venkatasubramanian R, Siivola E, Colpitts T et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Google Scholar 

  57. Poudel B, Hao Q, Ma Y et al (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Google Scholar 

  58. Xie WJ, He J, Kang HJ et al (2010) Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett 10:3283–3289

    Google Scholar 

  59. Liu WS, Zhang QY, Lan YC et al (2011) Thermoelectric property studies on Cu-doped n-type Cu x Bi2Te2.7Se0.3 nanocomposites. Adv Energy Mater 1:577–587

    Google Scholar 

  60. Ko DK, Kang YJ, Murray CB (2011) Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites. Nano Lett 11:2841–2844

    Google Scholar 

  61. Liu DW, Li JF, Chen G et al (2011) Effects of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi2Te3-based alloys. J Electron Mater 40:992–998

    Google Scholar 

  62. Yan X, Poudel B, Ma Y et al (2010) Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2·7Se0.3. Nano Lett 10:3373–3378

    Google Scholar 

  63. Ferdows A, Roger L (2010) Thermoelectric properties of Bi2Te3 atomic quintuple thin films. Appl Phys Lett 97:18078

    Google Scholar 

  64. Zhang GQ, Kirk B, Jauregui LA et al (2012) Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Lett 12:56–60

    Google Scholar 

  65. Zhang GQ, Fang HY, Yang HR et al (2012) Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett 12:3627–3633

    Google Scholar 

  66. Li AH, Shahbazi M, Zhou SH et al (2010) Electronic structure and thermoelectric properties of Bi2Te3 crystals and graphene-doped Bi2Te3. Thin Solid Films 518:e57–e60

    Google Scholar 

  67. Liu HL, Shi X, Xu FF et al (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11:422–425

    Google Scholar 

  68. Liu HL, Yuan X, Lu P et al (2013) Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1−x I x . Adv Mater 25:6607–6612

    Google Scholar 

  69. Zhu JJ, Palchik O, Chen SG et al (2000) Microwave assisted preparation of CdSe, PbSe, and Cu2–x Se nanoparticles. J Phys Chem B 104:7344–7347

    Google Scholar 

  70. Filippo E, Manno D, Serra A (2012) Synthesis and growth mechanism of dendritic Cu2–x Se microstructures. J Alloys Compd 538:8–10

    Google Scholar 

  71. Shen HB, Wang HZ, Yuan H et al (2012) Size-, shape-, and assembly-controlled synthesis of Cu2–x Se nanocrystals via a non-injection phosphine-free colloidal method. Cryst Eng Commun 14:555–560

    Google Scholar 

  72. Chen HH, Zou RJ, Wang N et al (2011) Lightly doped single crystalline porous Si nanowires with improved optical and electrical properties. J Mater Chem 21:3053–3059

    Google Scholar 

  73. Xiao C, Xu J, Li K et al (2012) Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J Am Chem Soc 134:4287–4293

    Google Scholar 

  74. Xiao C, Qin XM, Zhang J et al (2012) High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. J Am Chem Soc 134:18460–18466

    Google Scholar 

  75. Zhang Y, Hu CG, Zheng CH et al (2010) Synthesis and thermoelectric property of Cu2−x Se nanowires. J Phys Chem C 114:14849–14853

    Google Scholar 

  76. Terasaki I (2011) High-temperature oxide thermoelectrics. J Appl Phys 110:053705

    Google Scholar 

  77. Misture S, Edwards D (2012) High-temperature oxide thermoelectrics. Am Ceram Soc Bull 91:24–27

    Google Scholar 

  78. Noudem JG, Kenfaui D, Chateigner D et al (2011) Granular and lamellar thermoelectric oxides consolidated by spark plasma sintering. J Electron Mater 40:1100–1106

    Google Scholar 

  79. Ohta H, Kim SW, Mune Y et al (2007) Giant thermoelectric seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 6:129–134

    Google Scholar 

  80. Jood P, Mehta RJ, Zhan YL et al (2011) Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 11:4337–4342

    Google Scholar 

  81. Li F, Li JF, Zhao LD et al (2012) Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci 5:7188–7195

    Google Scholar 

  82. Li JF, Sui JH, Pei YL et al (2012) A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci 5:8543–8547

    Google Scholar 

  83. Constantinescu G, Diez JC, Rasekh S et al (2013) New promising Co-free thermoelectric ceramic based on Ba–Fe-oxide. J Mater Sci 24:1832–1836

    Google Scholar 

  84. Hochbaum AI, Chen R, Delgado RD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–168

    Google Scholar 

  85. Akram IB, Yuri B, Jamil TK (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451:168–171

    Google Scholar 

  86. Sabah KB, Richard GB, Pawan KG (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater 19:2445–2452

    Google Scholar 

  87. Lee JH, Galli GA, Grossman JC (2008) Nanoporous Si as an efficient thermoelectric material. Nano Lett 8:3750–3754

    Google Scholar 

  88. Yang CC, Li S (2011) Basic principles for rational design of high-performance nanostructured silicon-based thermoelectric materials. ChemPhysChem 12:3614–3618

    Google Scholar 

  89. Joshi G, Lee H, Lan YC et al (2008) Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett 8:4670–4674

    Google Scholar 

  90. Wang XW, Lee H, Lan YC et al (2008) Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett 93:193121(1–4)

  91. Lan YC, Minnich AJ, Chen G et al (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376

    Google Scholar 

  92. Zhu GH, Pillitteri A, Dresselhaus MS et al (2009) Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys Rev Lett 102:196803

    Google Scholar 

  93. Yu B, Zebarjadi M, Wang H et al (2012) Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett 12:2077–2082

    Google Scholar 

  94. Mingo N, Hauser D, Kobayashi NP et al (2009) “Nanoparticle-in-alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Lett 9:711–715

    Google Scholar 

  95. Lee EK, Hippalgaonkar K, Majumdar A et al (2012) Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett 12:2918–2923

    Google Scholar 

  96. Tritt TM (1996) Thermoelectrics run hot and cold. Science 272:1276–1277

    Google Scholar 

  97. Lee HJ, Cho YR, Kim IH (2011) Synthesis of thermoelectric Mg2Si by a solid state reaction. J Ceram Process Res 12:16–20

    Google Scholar 

  98. Nolas GS, Sharp J, Goldsmid HJ (2000) Thermoelectrics. Springer, Berlin

    Google Scholar 

  99. Ikeda T, Haviez L, Li YL et al (2012) Nanostructureing of thermoelectric Mg2Si via a nonequilibrium intermediate state. Small 8:2350–2355

    Google Scholar 

  100. Saravanan R, Charles RM (2009) Local structure of the thermoelectric material Mg2Si using XRD. J Alloys Compd 479:26–31

    Google Scholar 

  101. Vining CB, Rowe DM (eds) (1995) Handbook of thermoelectrics. CRC Press, New York

    Google Scholar 

  102. Massayasu A, Tsutomu I, Takashi N (2007) Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics. J Cryst Growth 304:196–201

    Google Scholar 

  103. Jiang HY, Long HS, Zhang LM (2004) Effects of solid-state reaction synthesis processing parameters on thermoelectric properties of Mg2Si. J Wuhan Univ Tech-Mater Sci Ed 19:55–56

    Google Scholar 

  104. Zhou SC, Bai CG (2011) Microwave direct synthesis and thermoelectric properties of Mg2Si by solid-state reaction. Trans Nonferr Met Soc China 21:1785–1789

    Google Scholar 

  105. You SW, Kim IH (2011) Solid-state synthesis and thermoelectric properties of Bi-doped Mg2Si compounds. Curr Appl Phys 11:S392–S395

    Google Scholar 

  106. Yang MJ, Zhang LM, Shen Q (2009) Nanostructuring and thermoelectric properties of bulk n-type Mg2Si. J Wuhan Univ Tech-Mater Sci Ed 24:912–916

    Google Scholar 

  107. Nikhil S, Daryoosh VT (2012) The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds. Appl Phys Lett 100:073107

    Google Scholar 

  108. Yang MJ, Shen Q, Zhang LM (2011) Effect of nanocomposite structure on the thermoelectric properties of 0.7-at% Bi-doped Mg2Si nanocomposite. China Phys B 20:106202

    Google Scholar 

  109. Yang MJ, Luo WJ, Shen Q et al (2009) Synthesis of Mg2Si nano composite and its thermoelectric properties. Rare Met Mater Eng S2:1055–1059

    Google Scholar 

  110. Zaitsev VK, Fedorov MI, Gurieva EA (2006) Highly effective Mg2Si1xSn x thermoelectrics. Phys Rev B 74:045207

    Google Scholar 

  111. Noda Y, Kon H, Furukawa Y (1992) Preparation and thermoelectric properties of Mg2Si1−x Ge x (x = 0.0–0.4) solid solution semiconductors. Mater Trans 33:845–850

    Google Scholar 

  112. Zhao D, Tian C, Tang S et al (2010) High temperature oxidation behavior of cobalt triantimonide thermoelectric material. J Alloys Compd 504:552–558

    Google Scholar 

  113. Zhao D, Tian C, Tang S et al (2011) High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test. J Alloys Compd 509:3166–3171

    Google Scholar 

  114. Hara R, Inoue S, Kaibe HT et al (2003) Aging effects of large-size n-type CoSb3 prepared by spark plasma sintering. J Alloys Compd 349:297–301

    Google Scholar 

  115. Donald IW (1993) Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J Mater Sci 28:2841–2886

    Google Scholar 

  116. Leszczynski J, Wojciechowski TK, Malecki AL (2011) Studies on thermal decomposition and oxidation of CoSb3. J Therm Anal Calorim 105:211–222

    Google Scholar 

  117. Sklad AC, Gaultois MW, Grosvenor AP (2010) Examination of CeFe4Sb12 upon exposure to air: is this material appropriate for use in terrestrial, high-temperature thermoelectric devices? J Alloys Compd 505:L6–L9

    Google Scholar 

  118. Mehrer H, Imre AW (2008) Diffusion and ionic conduction in oxide glasses. J Phys 106:012001

    Google Scholar 

  119. Shi X, Yang J, Salvador JR (2011) Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846

    Google Scholar 

  120. Rogl G, Aabdin Z, Schafler E et al (2012) Effect of HPT processing on the structure, thermoelectric and mechanical properties of Sr0.07Ba0.07Yb0.07Co4Sb12. J Alloys Compd 537:183–189

    Google Scholar 

  121. Christensen M, Johnsen S, Iversen BB (2010) Thermoelectric clathrates of type I. Dalton Trans 39:978–992

    Google Scholar 

  122. Saramat A, Svensson G, Palmqvist AE et al (2006) Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30. J Appl Phys 99:023708

    Google Scholar 

  123. Zintl E (1939) Intermetallische verbindungen. Angew Chem 52:1–6

    Google Scholar 

  124. Kauzlarich SM, Brown SR, Snyder GJ (2007) Zintl phases for thermoelectric devices. Dalton Trans 21:2099–2107

    Google Scholar 

  125. Paschen S, Pacheco V, Bentien A et al (2003) Are type-I clathrates Zintl phases and “phonon glasses and electron single crystals”? Phys B 328:39–43

    Google Scholar 

  126. Prokofiev A, Ikeda M, Makalkina E et al (2013) Melt spinning of clathrates: electron microscopy study and effect of composition on grain size. J Electron Mater 42:1628–1633

    Google Scholar 

  127. Yan X, Falmbigl M, Rogl G et al (2013) High-pressure torsion to improve thermoelectric efficiency of clathrates? J Electron Mater 42:1330–1334

    Google Scholar 

  128. Yang J, Li HM, Wu T et al (2008) Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv Funct Mater 18:2880–2888

    Google Scholar 

  129. Yan X, Joshi G, Liu WS et al (2011) Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett 11:556–560

    Google Scholar 

  130. Benjamin B, Joachim B, Micheal S et al (2011) An alternative approach to improve the thermoelectric properties of half-Heusler compounds. J Electron Mater 40:702–706

    Google Scholar 

  131. Xie WJ, Weidenkaff A, Tang XF (2012) Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2:379–412

    Google Scholar 

  132. Budnova O, Crispin X (2012) Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5:9345–9362

    Google Scholar 

  133. Zhou YC, Wang L, Zhang H et al (2012) Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers. Appl Phys Lett 101:012903

    Google Scholar 

  134. Han ZD, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36:914–944

    Google Scholar 

  135. Alaghemandi M, Gharib-Zahedi MR, Spohr E et al (2012) Thermal conductivity of polyamide-6,6 in the vicinity of charged and uncharged graphene layers: a molecular dynamics analysis. J Phys Chem C 116:14115–14122

    Google Scholar 

  136. Kamseu E, Nait-Ali B, Bignozzi MC et al (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J Eur Ceram Soc 32:1593–1603

    Google Scholar 

  137. Huang XY, Iizuka T, Jiang PK et al (2012) Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 116:13629–13639

    Google Scholar 

  138. Yan H, Sada N, Toshima N (2002) Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials. J Therm Anal Calorim 69:881–887

    Google Scholar 

  139. He M, Ge J, Fang M et al (2010) Fabricating polythiophene into highly aligned microwire film by fast evaporation of its whisker solution. Polymer 51:2236–2243

    Google Scholar 

  140. Casian A, Balandin AA, Dusciac V et al (2002) Promising low-dimensional organic material for IR detectors. In: Proceedings of the 21st international conference on thermoelectrics, IEEE, Long Beach, 25–29 August, 2002

  141. He M, Han W, Ge J et al (2011) All-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells with controlled molecular organization and nanoscale morphology. Energy Environ Sci 4:2894–2902

    Google Scholar 

  142. He M, Han W, Ge J et al (2011) Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells. Nanoscale 3:3159–3163

    Google Scholar 

  143. He M, Qiu F, Lin Z (2011) Conjugated rod-coil and rod–rod block copolymers for photovoltaic applications. J Mater Chem 21:17039–17048

    Google Scholar 

  144. Ge J, He M, Yang XB et al (2012) The first homochiral coordination polymer with temperature-independent piezoelectric and dielectric properties. J Mater Chem 22:19213–19216

    Google Scholar 

  145. Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24:280–285

    Google Scholar 

  146. Dubey N, Leclerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci B: Polym Phys 49:467–475

    Google Scholar 

  147. Njoroge JL (2010) High thermoelectric efficiency achieved in polymer-nanocomposites. Mater Res Bull 35:909–910

    Google Scholar 

  148. He M, Qiu F, Lin ZQ (2013) Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6:1352–1361

    Google Scholar 

  149. Xuan Y, Liu X, Desbief S et al (2010) Thermoelectric properties of conducting polymers: the case of poly(3-hexylthiophene). Phys Rev B 82:15454–15457

    Google Scholar 

  150. Kim GH, Shao L, Zhang K et al (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12:719–723

    Google Scholar 

  151. Yu CH, Choi KW, Yin L et al (2011) Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5:7885–7892

    Google Scholar 

  152. Chen JK, Gui XC, Wang ZW (2012) Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications. Appl Mater Interface 4:81–86

    Google Scholar 

  153. Wang YY, Cai KF, Yin JL et al (2011) In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures. J Nanopart Res 13:533–536

    Google Scholar 

  154. Toshima N, Jiravanichanun N, Marutani H (2012) Organic thermoelectric materials composed of conducting polymers and metal nanoparticles. J Electron Mater 41:1735–1742

    Google Scholar 

  155. Du Y, Shen SZ, Cai KF et al (2013) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 42:1882–1887

    Google Scholar 

  156. Kim GH, Pipe KP (2012) Thermoelectric model to characterize carrier transport in organic semiconductors. Phys Rev B 86:085208

    Google Scholar 

  157. Cronin BV (2009) An inconvenient truth about thermoelectrics. Nat Mater 8:84–85

    Google Scholar 

  158. Kraemer D, Poudel B, Feng HP et al (2011) High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater 10:532–538

    Google Scholar 

  159. Wang XW, Lee H, Lan YC et al (2008) Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett 93:193121

    Google Scholar 

Download references

Acknowledgments

C. Han gratefully acknowledges the Chinese Scholarship Council (CSC) for his scholarship. Z. Li acknowledges support from Australian Research Council (ARC) through the Discovery Project DP130102699. S. Dou is grateful for support from the Baosteel-Australia Research Centre (BARC) through the Project BA110011 and ARC through the Linkage Project LP120200289. The authors also thank Dr. T. Silver for polishing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Li or Shixue Dou.

Additional information

SPECIAL ISSUE: Advanced Materials for Clean Energy

About this article

Cite this article

Han, C., Li, Z. & Dou, S. Recent progress in thermoelectric materials. Chin. Sci. Bull. 59, 2073–2091 (2014). https://doi.org/10.1007/s11434-014-0237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0237-2

Keywords

Navigation