Skip to main content
Log in

Experimental study on rheologic behaviour of debris flow material

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In order to describe the flow behaviour of debris flows often rheologic models are used. This study introduces two novel facilities to determine rheologic parameters of different models for debris flow material mixtures containing grain sizes larger than to be measured in standard viscometers. The diameter of the vertically rotating flume (VRF) is 2.5 m, the rectangular cross section has a width of 0.45 m, and the maximum rotational speed is around 30 revolutions per minute, corresponding to a mean speed of the examined mixture of ∼4 m/s. From the measured flow parameters total boundary shear stress and corresponding shear rate of the flowing mixture are derived. The ball measuring system (BMS) consists of a sphere that is dragged at specific speeds across a sample of 0.5 l volume with the help of a small sphere holder. Accordingly torques due to drag exerted on the sphere and its holder as well as corresponding speeds are measured and transformed into values of shear stress and shear rate based on the method of Metzner and Otto. Material taken from fresh debris flow deposits in Eastern Switzerland have been investigated with both facilities. We present results from experiments involving mixtures with different sediment concentrations and with grain sizes up to 5 mm. Although estimated from completely different approaches the rheologic parameters of the independent measurements are generally in reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ancey C (1999) Rhéologie des laves torrentielles. Final scientific report PNRN 1998–1999, CEMAGREF

  2. Ancey C (2001a) Debris flows and related phenomena. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics. Lecture Notes in Physics (LNP) 582:528–547

  3. Ancey C (2001b) Role of lubricated contacts in concentrated polydisperse suspensions. J Rheol 45:1421–1439

    Article  Google Scholar 

  4. Ancey C, Jorrot H (2001) Yield stress for particle suspensions within a clay dispersion. J Rheol 45:297–319

    Article  Google Scholar 

  5. Ancey C (2006) Plasticity and geophysical flows: a review. J Non-Newtonian Fluid Mechanics (in press). doi:10.1016/j.jnnfm.2006.05.005, 2006

  6. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond 225:49–63

    Google Scholar 

  7. Bertolo P, Wieczorek GF (2005) Calibration of numerical models for small debris flows in Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 5:993–1001

    Article  Google Scholar 

  8. Brown SM (1992) The vertically rotating flume for use as a rheometer, Thesis, University of Missouri-Rolla, USA

  9. Chen CL (1986) Chinese concepts of modelling hyperconcentrated streamflow and debris flow. Proceedings of the third International Symposium on River Sedimentation, University of Mississippi pp 1647–1657

  10. Contreras SM, Davies TR (2000) Coarse-grained debris flows: Hysteresis and time-dependent rheology. J Hydraul Eng 126(12):938–941

    Article  Google Scholar 

  11. Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleischer PJ (eds) Developments and applications of geomorphology. Springer, Heidelberg pp 268–317

    Google Scholar 

  12. Coussot P (1994) Steady, laminar flow of concentrated mud suspensions in open channel. J Hydraul Res 32(4):535–559

    Google Scholar 

  13. Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40:209–227

    Article  Google Scholar 

  14. Coussot P (1997) Mudflow rheology and dynamics. IAHR monograph series. Balkema, Rotterdam

    Google Scholar 

  15. Coussot P, Piau JM (1995) A large scale field coaxial cylinders rheometer for the study of the rheology of natural coarse suspensions. J Rheol 39:105–125

    Article  Google Scholar 

  16. Coussot P, Proust S (1996) Slow, unconfined spreading of a mudflow. J Geophys Res 101(B11):25217–25229

    Article  Google Scholar 

  17. Coussot P, Laigle D, Arattano M, Deganutti A, Marchi L (1998) Direct determination of rheological characteristics of debris flow. J Hydraul Eng 124(8):865–868

    Article  Google Scholar 

  18. Coussot P, Ancey C (1999) Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E59:4445–4457

    Google Scholar 

  19. Cui P, Chen X, Waqng Y, Hu K, Li Y (2005) Jiangia Ravine debris flows in south-western China. In: Jakob M, Hungr O (eds) Debris-flow hazards and related Phenomena. Springer, Heidelberg, pp 565–594

    Google Scholar 

  20. Einstein HA (1950) The bed-load function at high sediment rates. US Department of Agriculture, Techn Bull 1026

  21. Holmes RR, Huizinga RJ, Brown SM, Jobson HI (1993) Laboratory procedures and data reduction techniques to determine rheologic properties of mass flows. USGS Water Resour Invest Rep 93-4123

  22. Huebl J, Steinwendtner H (2000) Estimation of rheological properties of viscous debris flow using a belt conveyor. Phys Chem Earth 25(B9):751–755

    Google Scholar 

  23. Huiziniga RJ (1993) An analysis of the two-dimensional flow in a vertically rotating flume. Thesis, University of Missouri-Rolla, USA

  24. Huizinga RJ (1996) Verification of vertically rotating flume using non-Newtonian fluids. J Hydraul Eng 122(8):456–459

    Article  Google Scholar 

  25. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  26. Iverson RM (2003) The debris-flow rheology myth. In: Rickenmann D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment; Proceedings of the third International DFHM conference Davos Switzerland September 10–12, 2003, Mill Press, Rotterdam, pp 303–314

  27. Johnson AM (1970) Physical processes in geology. Freeman and Cooper, San Franzisco

    Google Scholar 

  28. Johnson AM (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 257–361

    Google Scholar 

  29. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(8):727–730

    Article  Google Scholar 

  30. Kaitna R (2006) Debris flow experiments in a rotating drum. Thesis, University for Natural Resources and Applied Life Sciences (BOKU) Vienna, Austria

  31. Kaitna R, Rickenmann D, Schneiderbauer S (2006) Comparative rheologic investigations in a vertically rotating flume and a ‘moving bed’ conveyor belt flume. In: Lorenzini G, Brebbia CA, Emmanouloudis DE (eds) Monitoring, simulation, prevention and remediation of dense and debris flows. WitPress, Southampton, pp 89–98

    Chapter  Google Scholar 

  32. Kaitna R, Rickenmann D (2007) A new experimental facility for laboratory debris flow investigation. J Hydraul Res (in press)

  33. Major JJ, Pierson T (1992) Debris flow rheology: experimental analysis of fine-grained slurries. Water Resour Res 28:841–857

    Article  Google Scholar 

  34. Major JJ (1997) Verification of vertically rotating flume using non-Newtonian fluids. Discussion by Jon. J. Major. J Hydraul Eng 123(10):936–937

    Article  Google Scholar 

  35. Metzner AB, Otto RE (1957) Agitation of Non-Newtonian fluids. AIChE J 3:3–10

    Article  Google Scholar 

  36. Müller M, Tyrach J, Brunn PO (1999) Rheological characterization of machine-applied plasters. ZKG Int 52:252–258

    Google Scholar 

  37. Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazards Earth Syst Sci 6:155–165

    Article  Google Scholar 

  38. O’Brien JS, Julien PY (1988) Laboratory analysis of mudflow properties. J Hydraul Eng 114:877–887

    Article  Google Scholar 

  39. O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261

    Article  Google Scholar 

  40. Parson JD, Whipple KX, Simoni A (2001) Experimental study of the grain-flow, fluid-mud transition in debris flows. J Geol 109:427–447

    Article  Google Scholar 

  41. Phillips CJ, Davies TRH (1991) Determining rheologic parameters of debris flow material. Geomorphology 4:101–110

    Article  Google Scholar 

  42. Platzer K (2007) Experimental investigations of avalanche forces acting on snow sheds. Thesis, University for Natural Resources and Applied Life Sciences (BOKU) Vienna, Austria

  43. Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazards Earth Syst Sci 5:799–819

    Article  Google Scholar 

  44. Remaitre A, Malet JP, Maquaire O, Ancey C, Locat J (2005) Flow behaviour and runout modelling of a complex derbis flow in a clay-shale basin. Earth Surf Proc Landforms 30:479–488

    Article  Google Scholar 

  45. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  46. Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10:241–264. doi:10.1007/s10596-005-9021-3

    Google Scholar 

  47. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  48. Schatzmann M (2005) Rheometry for large particle fluids and debris flows. Dissertation No 16093, ETH Zurich, Switzerland

  49. Schatzmann M, Fischer P, Bezzola GR, Minor HE (2003a) The ball measuring system—a new method to determine debris flow rheology. In: Rickenmann D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment; Proceedings of the third International DFHM conference Davos Switzerland, September 10–12 2003, Mill Press, Rotterdam, pp 387–398

  50. Schatzmann M, Fischer P, Bezzola GR (2003b) Rheological behaviour of fine and large particle suspensions. J Hydr Eng (ASCE) 129:796–803

    Article  Google Scholar 

  51. Smart GM, Jaeggi M (1983) Sediment transport on steep slopes. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Mitteilungen 64. Zürich: Eigenverlag

  52. Sosio R, Crosta GB, Frattini P (2007) Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surf Process Landforms 32:290–306

    Article  Google Scholar 

  53. Takahashi T (1991) Debris flow. IAHR monograph series. Balkema, Rotterdam

    Google Scholar 

  54. Tecca PR, Galgaro A, Genevois R, Deganutti AM (2003) Developement of a remotely controlled debris flow monitoring system in the Dolomites (Aquabona, Italy). Hydrol Process 17:1771–1784

    Article  Google Scholar 

  55. Terzaghi K (1963) Theoretical soil mechanics. Wiley, New York

    Google Scholar 

  56. Tyrach J (2001) Rheologische Charakterisierung von zementären Baustoffsystemen. Dissertation, Universität Erlangen-Nürnberg

  57. Volgger Ch (2006) Numerische Simulation zum Fließverhalten von Muren. Studie in einer vertikal rotierenden Trommel. Master Thesis at Leopold-Franzens-Universität Innsbruck, Austria (unpublished report)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kaitna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaitna, R., Rickenmann, D. & Schatzmann, M. Experimental study on rheologic behaviour of debris flow material. Acta Geotech. 2, 71–85 (2007). https://doi.org/10.1007/s11440-007-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0026-z

Keywords

Navigation