Skip to main content
Log in

Similarities between GSH, hypoplasticity and KCR

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Accounting for elasto-plastic motion in granular media, hypoplasticity is a state-of-the-art constitutive model derived from data accumulated over many decades. In contrast, GSH, a hydrodynamic theory, is derived from general principles of physics, with comparatively few inputs from experiments, yet sporting an applicability ranging from static stress distribution via elasto-plastic motion to fast dense flow, including non-uniform ones such as a shear band. Comparing both theories, we find great similarities for uniform, slow, elasto-plastic motion. We also find that proportional paths and the Goldscheider rule used to construct barodesy, another, more recent constitutive model, are natural results of GSH’s equations. This is useful as it gives these constitutive relations a solid foundation in physics and, in reverse, GSH a robust connection to reality. The same symbiotic relation exists between GSH and KCR, or Kamrin’s non-local constitutive relation, a model that was successfully employed to account for a wide shear band in split-bottom cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(v_{ij}\) :

\(\equiv \frac{1}{2}(\nabla _iv_j+\nabla _jv_i)\), the strain rate,

\(u_{ij}\) :

\(\equiv \varepsilon ^{elast}_{ij}\), the elastic strain,

\(\pi _{ij}\) :

the elastic stress,

\(\sigma _{ij}\) :

the Cauchy stress,

\(x^*_{ij}\) :

the traceless part of \(x_{ij}\),

\(\Delta\) :

\(\equiv -u_{\ell \ell }\),

\(P_\Delta\) :

\(\equiv \pi _{\ell \ell }/3\),

P :

\(\equiv \sigma _{\ell \ell }/3\),

\(v_s\) :

\(\equiv \sqrt{v^*_{ij}v^*_{ij}} \equiv ||v^*_{ij}||\),

\(u_s\) :

\(\equiv \sqrt{ u^*_{ij}u^*_{ij}}\),

\(\pi _s\) :

\(\equiv \sqrt{ \pi ^*_{ij}\pi ^*_{ij}}\),

\(\sigma _s\) :

\(\equiv \sqrt{ \sigma ^*_{ij}\sigma ^*_{ij}}\).

References

  1. Alonso-Marroquin F, Herrmann HJ (2004) Ratcheting of granular materials. Phys Rev Lett 92:054301

    Article  Google Scholar 

  2. Bräuer K, Pfitzner M, Krimer DO, Mayer M, Jiang YM, Liu M (2006) Granular elasticity: stress distributions in silos and under point loads. Phys Rev E (Statistical, Nonlinear, and Soft Matter Physics), 74(6):061311

  3. Chen YP, Hou MY, Jiang YM, Liu M (2013) Hydrodynamics of granular gases with a two-peak distribution. Phys Rev E88:052204

    Google Scholar 

  4. Crassous J, Metayer J-F, Richard P, Laroche C (2008) Experimental study of a creeping granular flow at very low velocity. J Stat Mech 2008:P03009

    Article  Google Scholar 

  5. de Gennes PG, Prost J (1993) The physics of liquid crystals. Clarendon Press, Oxford

    Google Scholar 

  6. Dijksman JA, Wortel GH, van Dellen LTH, Dauchot O, van Hecke M (2011) Jamming, yielding, and rheology of weakly vibrated granular media. Phys Rev Lett 107:108303

    Article  Google Scholar 

  7. Einav I (2012) The unification of hypo-plastic and elasto-plastic theories. Int J Solid Struct 49:1305–1315

    Article  Google Scholar 

  8. Einav I, Puzrin AM (2004) Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. J Geotech Geoenviron Eng 130(1):81–92

    Article  Google Scholar 

  9. Fang C (2015) A k-\(\varepsilon\) turbulence closure model of an isothermal dry granular dense matter. Continuum Mech Thermodyn. doi:10.1007/s00161-015-0454-1

  10. Fang C, Lee C-H (2008) A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material; II. Normal stress difference in a viscometric flow, and an unsteady flow with a moving boundary. Continuum Mech Thermodyn 19:441455. doi:10.1007/s00161-007-0063-8

    Article  MathSciNet  Google Scholar 

  11. Fang C, Wang Y, Hutter K (2008) A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material. Continuum Mech Thermodyn 19:423440. doi:10.1007/s00161-007-0062-9

    Article  MathSciNet  Google Scholar 

  12. Fenistein D, van Hecke M (2003) Kinematics: Wide shear zones in granular bulk flow. Nature 425:6955

    Article  Google Scholar 

  13. Fenistein D, van de Meent JW, van Hecke M (2004) Universal and wide shear zones in granular bulk flow. Phys Rev Lett 92:094301

    Article  Google Scholar 

  14. Fenistein D, van de Meent JW, van Hecke M (2006) Core precession and global modes in granular bulk flow. Phys Rev Lett 96:118001

    Article  Google Scholar 

  15. Gudehus G (2010) Physical soil mechanics. Springer, New York

    Google Scholar 

  16. Gudehus G, Jiang YM, Liu M (2011) Seismo- and thermodynnamics of granular solids. Granular Matter 1304:319–340

    Article  Google Scholar 

  17. Hardin BO, Richart FE (1963) Elastic wave velocities in granular soils. J Soil Mech Found Div ASCE 89(SM1):33–65

    Google Scholar 

  18. Henann DL, Kamrin K (2012) A predictive, size-dependent continuum model for dense granular flows. Proc Natl Acad Sci 110:6730. http://www.pnas.org/content/110/17/6730.full

  19. Houlsby GT, Amorosi A, Rojas E (2005) Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Geotechnique 55(5):383392

    Google Scholar 

  20. Humrickhouse PW (2009) PhD thesis, University of WisconsinMadison

  21. Humrickhouse PW, Sharpe JP, Corradini ML (2010 ) Comparison of hyperelastic models for granular materials. Phys Rev E 81:011303

    Article  Google Scholar 

  22. Jiang Y, Liu M (2003) Granular elasticity without the Coulomb condition. Phys Rev Lett 91:144301

    Article  Google Scholar 

  23. Jiang YM, Liu M (2007) From elasticity to hypoplasticity: dynamics of granular solids. Phys Rev Lett 99(10):105501

    Article  Google Scholar 

  24. Jiang YM, Liu M (2007) A brief review of granular elasticity. Phys J Eur E 22:255

    Google Scholar 

  25. Jiang YM, Liu M (2008) Incremental stress-strain relation from granular elasticity: comparison to experiments. Phys Rev E (Statistical, Nonlinear, and Soft Matter Physics) 77(2):021306

  26. Jiang YM, Liu M (2009) Granular solid hydrodynamics. Granular Matter 11:139. Free download: http://www.springerlink.com/content/a8016874j8868u8r/fulltext

  27. Jiang YM, Liu M (2009) The physics of granular mechanics. In: Kolymbas D, Viggiani G (eds) Mechanics of natural solids. Springer, New York, pp 27–46

    Chapter  Google Scholar 

  28. Jiang YM, Liu M (2009) GSH, or granular solid hydrodynamics: on the analogy between sand and polymers. AIP Conference Proceedings 7/1/2009, Vol. 1145 Issue 1, p1096

  29. Jiang Y, Liu M (2013) Proportional path, barodesy, and granular solid hydrodynamics. Granular Matter 15:237

    Article  Google Scholar 

  30. Jiang Y, Liu M (2013) Stress- and rate-controlled granular rheology. AIP Conf Proc 1542:52. doi:10.1063/1.4811867

  31. Jiang YM, Liu M (2014) Granular Solid Hydrodynamics (GSH): a broad-ranged macroscopic theory of granular media. Acta Mech 225:2363

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang YM, Liu M (2015) Applying GSH to a wide range of experiments in granular media. Eur Phys J E 38:15

    Article  Google Scholar 

  33. Jiang YM, Zheng HP, Peng Z, Fu LP, Song SX, Sun QC, Mayer M, Liu M (2012) Expression for the granular elastic energy. Phys Rev E 85:051304

    Article  Google Scholar 

  34. Kamrin K, Bouchbinder E (2014) Two-temperature continuum thermomechanics of deforming amorphous solids. J Mech Phys Solids 73:269288

    Article  MathSciNet  Google Scholar 

  35. Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett 108:178301

    Article  Google Scholar 

  36. Khalatnikov IM (1965) Introduction to the theory of superfluidity. Benjamin, New York

    Google Scholar 

  37. Khidas Y, Jia X (2010) Anisotropic nonlinear elasticity in a spherical-bead pack: influence of the fabric anisotropy. Phys Rev E 81:021303

    Article  Google Scholar 

  38. Kolymbas D (2000) Introduction to hypoplasticity. Balkema, Rotterdam

    Google Scholar 

  39. Kolymbas D (2009) Sand as an archetypical natural solid. In: Kolymbas D, Viggiani G (eds) Mechanics of natural solids. Springer, Berlin

    Chapter  Google Scholar 

  40. Kolymbas D (2011) Barodesy: a new hypoplastic approach. Int J Numer Anal Methods Geomech. doi:10.1002/nag.1051

  41. Kolymbas D (2012) Barodesy: a new constitutive frame for soils. Geotech Lett 2:1723. doi:10.1680/geolett.12.00004

    Article  Google Scholar 

  42. Komatsu TS, Inagaki S, Nakagawa N, Nasuno S (2001) Creep motion in a granular pile exhibiting steady surface flow. Phys Rev Lett 86:17571760

    Article  Google Scholar 

  43. Krimer D, Mahle S, Liu M (2012) Dip of the granular shear stress. Phys Rev E 86:061312

    Article  Google Scholar 

  44. Krimer DO, Pfitzner M, Bräuer K, Jiang YM, Liu M (2006) Granular elasticity: general considerations and the stress dip in sand piles. Phys Rev E 74(6):061310

    Article  Google Scholar 

  45. Kuwano R, Jardine RJ (2002) On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52:727

    Article  Google Scholar 

  46. Landau LD, Lifshitz EM (1987) Fluid mechanics. Heinemann, Butterworth

    MATH  Google Scholar 

  47. Mayer M, Liu M (2010) Propagation of elastic waves in granular solid hydrodynamics. Phys Rev E 82:042301

    Article  Google Scholar 

  48. Müller O, Liu M, Pleiner H, Brand HR (2016) Transient elasticity and polymeric uids: small-amplitude deformations. Phys Rev E 93:023113

    Google Scholar 

  49. Müller O, Liu M, Pleiner H, Brand HR (2016) Transient elasticity and the rheology of polymeric uids with large amplitude deformations. Phys Rev E 93:023114

    Google Scholar 

  50. Nedderman RM (1992) Statics and kinematics of granular materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  51. Nguyen Van B, Darnige T, Bruand A, Clement E (2011) Creep and fluidity of a real granular packing near jamming. Phys Rev Lett 107:138303

    Article  Google Scholar 

  52. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-Frictional Mater 2:279

    Article  Google Scholar 

  53. Niemunis A, Tavera CEG, Wichtmann T (2016) Peak stress obliquity in drained and undrained sands. Simulations with neohypoplasticity.In: Triantafyllidis T (ed) Holistic simulation of geotechnical installation processes. Lect Notes Appl Comput Mech 80. doi:10.1007/978-3-319-23159-4-5, Springer

  54. Pleiner H, Liu M, Brand HR (2004) Nonlinear fluid dynamics description of non-newtonian fluids. Rheol Acta 43:502

    Article  Google Scholar 

  55. Rondon HA, Wichtmann T, Triantafyllidis Th, Lizcano A (2007) Hypoplastic material constants for a well-graded granular material for base and subbase layers of flexible pavements. Acta Geotech 1(2):113–126

    Article  Google Scholar 

  56. Sun Q (2015) Energy fluctuations at particle scale (preprint)

  57. Sun Q (2015) Granular structure and the nonequilibrium thermodynamics. Acta Phys Sin 64(7):076101

    Google Scholar 

  58. Sun Q, Jin F, Zhou GGD (2013) Energy characteristics of simple shear granular flows. Granular Matter 15:119128

    Google Scholar 

  59. Sun Q, Song S, Liu J, Fei M, Jin F (2013) Granular materials: bridging damaged solids and turbulent fluids. Theor Appl Mech Lett 3:021008

    Article  Google Scholar 

  60. Tejchman J, Wu W (2010) FE-investigations of micro-polar boundary conditions along interface between soil and structure. Granular Matter 12:399

    Article  MATH  Google Scholar 

  61. Thornton C, Antony SJ (1998) Phil Trans R Soc A: mathematical, physical and engineering sciences, 356, No. 1747, Mechanics of Granular Materials in Engineering and Earth Sciences (Nov. 15, 1998), 2763–2782

  62. Temmen H, Pleiner H, Liu M, Brand HR (2000) Convective nonlinearity in non-newtonian fluids. Phys Rev Lett 84:3228

    Article  Google Scholar 

  63. Temmen H, Pleiner H, Liu M, Brand HR, Temmen et al (2001) reply, Phys Rev Lett 86:745

  64. Wichtmann T (2005) Schriftreihe Inst. Grundbau u. Bodenmechanik, University Bochum, Heft 38, Fig 4.17

  65. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  66. Wroth P, Schofield A (1968) Critical state soil mechanics. McGraw-Hill, London

    Google Scholar 

  67. Wu W (2006) On high-order hypoplastic models for granular materials. J Eng Math 56:2334

    Article  MathSciNet  Google Scholar 

  68. Wu W, Kolymbas D (2000) Hypoplasticity, then and now. In: Constitutive modelling of granular materials. Springer, Berlin

    Google Scholar 

  69. Yan X-P, Peng Z, He F-F, Jiang Y-M (in press) Measurements of shear elasticity of granular solids, to be published in Acta Phys Sin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, M. Similarities between GSH, hypoplasticity and KCR. Acta Geotech. 11, 519–537 (2016). https://doi.org/10.1007/s11440-016-0461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0461-9

Keywords

Navigation