Skip to main content
Log in

A closed-form solution for seismic passive earth pressure behind a retaining wall supporting cohesive–frictional backfill

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The evaluation of seismic passive earth pressure is an important aspect in designing safe retaining walls. In this paper, a slice analysis method is adopted to study the nonlinear distribution of seismic passive earth pressure while considering most of the possible parameters. The closed-form expressions for the resultant force of seismic passive earth pressure, earth pressure distribution, and its application position are obtained. The explicit solution for the critical failure angle of seismic passive earth pressure is proposed by simplifying the relation between the resultant force and the failure angle based on a graphical analysis method. Under certain conditions, the present method correlates with classical passive earth pressure theories. By comparing the present method with test results and previously published solutions, the results are found to be consistent. The influence of the seismic coefficients on seismic passive earth pressure is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

k h :

Horizontal acceleration coefficient

k v :

Vertical acceleration coefficient

θ :

Seismic angle

H :

Height of the retaining wall

i :

Battered angle of the back of the retaining wall with the vertical

β :

Angle of the backfill surface with the horizontal

γ :

Unit weight of the backfill

φ :

Internal friction angle of the backfill

δ :

External friction angle between the back of the retaining wall and the backfill

c :

Cohesion of the backfill

c w :

Adhesion between the back of the retaining wall and the backfill

q 0 :

Uniform surcharge

α :

Failure angle of the backfill wedge

α cr :

Critical failure angle of the backfill wedge

W :

Total weight of the backfill wedge

dw :

Total weight of the backfill slice

p(z):

Seismic passive earth pressure at depth z

E p :

Resultant force of the seismic passive earth pressure

r(z):

Reaction load on the failure surface of the backfill wedge at depth z

R :

Reaction force on the failure surface of the backfill wedge

q(z):

Uniform surcharge on the pane of the backfill wedge that is parallel to the inclined backfill surface at depth z

z 0 :

Position of the point of application of the resultant force from the bottom of the retaining wall

z 0/H :

Normalized position of the application point of the resultant force from the bottom of the retaining wall

References

  1. Benmeddour D, Mellas M, Frank R, Mabrouki A (2012) Numerical study of passive and active earth pressures of sands. Comput Geotech 40:34–44

    Article  Google Scholar 

  2. Caltabiano S, Cascone E, Maugeri M (2012) Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions. Soil Dyn Earthq Eng 37:38–55

    Article  Google Scholar 

  3. Ichibara M, Matsuzawa H (1973) Earth pressure during earthquake. Soils Found 13(4):75–86

    Article  Google Scholar 

  4. Kapila JP (1962) Earthquake resistant design of retaining walls. In: Proceedings of the second earthquake symposium. Roorkee, India, pp 97–108

    Google Scholar 

  5. Kim WC, Park D, Kim B (2010) Development of a generalised formula for dynamic active earth pressure. Geotechnique 60(9):723–727

    Article  Google Scholar 

  6. Lin YL, Yang GL, Zhao LH, Zhong Z (2010) Horizontal slices analysis method for seismic earth pressure calculation. Chin J Rock Mech Eng 29(12):2581–2591

    Google Scholar 

  7. Lin YL, Yang GL, Huang XJ (2011) Thin-layer micro-element method for computing passive earth pressure of backfilled cohesive soil on retaining wall. J High Trans Res Dev 28(3):12–19

    Google Scholar 

  8. Lin YL, Leng WM, Yang GL, Zhao LH, Li L, Yang JS (2015) Seismic active earth pressure of cohesive–frictional soil on retaining wall based on a slice analysis method. Soil Dyn Earthq Eng 70:133–147

    Article  Google Scholar 

  9. Matsuzawa H, Ishibashi I, Kawamura M (1985) Dynamic soil and water pressure of submerged soils. J Geotech Eng 111(10):1161–1176

    Article  Google Scholar 

  10. Mononobe N (1924) Considerations into earthquake vibrations and vibration theories. J Jpn Soc Civ Eng 10(5):1063–1094

    Google Scholar 

  11. Mononobe N, Matsuo H (1929) On the determination of earth pressure during earthquakes. Proceedings of the world engineering congress. Tokyo, Japan, pp 177–185

    Google Scholar 

  12. Nakamura S (2006) Reexamination of Mononobe–Okabe theory of gravity retaining walls using centrifuge model tests. Soils Found 42(2):135–146

    Article  Google Scholar 

  13. Okabe S (1924) General theory on earth pressure and seismic stability of retaining wall and dam. J Jpn Soc Civ Eng 10(6):1277–1323

    Google Scholar 

  14. Sherif MA, Ishibashi I, Lee CD (1982) Earth pressures against rigid retaining walls. J Geotech Eng 108(5):679–695

    Google Scholar 

  15. Shukla SK, Habibi D (2011) Dynamic passive pressure from cφ soil backfills. Soil Dyn Earthq Eng 31:845–848

    Article  Google Scholar 

  16. Steedman RS, Zeng X (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique 40(1):103–112

    Article  Google Scholar 

  17. Wilson P, Elgamal A (2010) Large-scale passive earth pressure load–displacement tests and numerical simulation. J Geotech Geoenviron Eng 136(12):1634–1643

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51308551), the Hunan Provincial Natural Science Foundation of China (Grant No. 13JJ4017), and the China Postdoctoral Science Foundation Funded Project (Grant No. 2012M511760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-liang Lin.

Appendices

Appendix 1: Expressions for the symbols in text

$$k_{1} = \frac{{ - \cos \left( {\alpha + \theta - \varphi } \right)\left[ {\cos (\alpha + \beta )\sin (i - \theta ) - \cos (i - \beta )\sin (\alpha + \theta )} \right]}}{{\cos (\alpha + \beta )\left[ {\cos (\alpha + \theta - \varphi )\sin (\beta + \delta - i) + \cos (\delta + \theta - i)\sin (\alpha + \beta - \varphi )} \right]}}$$
(19)
$$k_{2} = - \frac{\cos (\alpha + \theta - \varphi )\cos (i - \beta ) + \sin (i - \theta )\sin (\beta + \alpha - \varphi )}{\cos (\alpha + \theta - \varphi )\sin (\beta + \delta - i) + \cos (\delta + \theta - i)\sin (\alpha + \beta - \varphi )}$$
(20)
$$k_{3} = \frac{\cos (i - \beta )\cos (\beta - \theta )\cos \varphi }{{\cos (\beta + \alpha )\left[ {\cos (\alpha + \theta - \varphi )\sin (\beta + \delta - i) + \cos (\delta + \theta - i)\sin (\alpha + \beta - \varphi )} \right]}}$$
(21)
$$l_{1} = 1 - k_{1} \frac{\cos (\alpha + \beta )\sin (\alpha + i - \varphi - \delta )}{\cos (\alpha + \theta - \varphi )\sin (i + \alpha )}$$
(22)
$$l_{2} = \frac{{2 \times \left[ {\cos (\alpha + \beta )\sin (\alpha + \beta - \varphi )\cos \delta \cdot c_{\text{w}} + \sin (\delta + \beta - i)\cos (i - \beta )\cos \varphi \cdot c} \right]}}{{\sin (i + \alpha )\left[ {\cos (\alpha + \theta - \varphi )\sin (\beta + \delta - i) + \cos (\delta + \theta - i)\sin (\alpha + \beta - \varphi )} \right]}}$$
(23)
$$\begin{aligned} T_{1} & = \frac{\cos (i - \delta )}{{\cos i\cos \theta \cos^{2} (\beta + \delta + \varphi - i)}} \\ & \quad \times\, \left[ \begin{array}{c} \frac{1}{2}\gamma H(1 - k_{\text{v}} )\cos (i - \beta )\sin (\varphi + \beta - \theta ) \hfill \\ +\,q_{0} (1 - k_{\text{v}} )\cos i\sin (\varphi + \beta - \theta ) + c \cdot \cos \theta \cos \varphi \cos i \hfill \\ \end{array} \right] \\ \end{aligned}$$
(24)
$$\begin{aligned} T_{2} & = \frac{{\cos (i - \beta )H^{2} }}{{\cos^{3} i\cos \theta \cos (i - \delta )\cos^{2} (\beta + \varphi + \delta - i)}} \\ & \quad \times\, \left[ \begin{array}{c} \frac{1}{2}\gamma H(1 - k_{\text{v}} )\cos (i - \beta )\sin (\delta + \varphi )\cos (\delta + \theta - i) + q_{0} (1 - k_{\text{v}} )\cos i\sin (\delta + \varphi )\cos (\delta + \theta - i) \hfill \\ +\,c \cdot \cos \theta \cos \varphi \cos i\cos (i - \beta ) + c_{\text{w}} \cdot \cos i\cos \theta \cos \delta \cos (\beta + \delta + \varphi - i) \hfill \\ \end{array} \right] \\ \end{aligned}$$
(25)
$$\begin{aligned} T_{3} & = \frac{H}{{\cos^{2} i\cos \theta \cos^{2} (\beta + \varphi + \delta - i)}} \\ & \quad \times\, \left\{ \begin{array}{c} \left[ {\frac{1}{2}\gamma H(1 - k_{\text{v}} )\cos (i - \beta ) + q_{0} (1 - k_{\text{v}} )\cos i} \right] \hfill \\ \times\, \left[ {\cos (\delta + \theta - i)\cos (i - \beta ) + \sin (\varphi + \delta )\sin (\varphi + \beta - \theta )} \right] \hfill \\ + 2c \cdot \cos i\cos \theta \cos \varphi \cos (i - \beta )\sin (\beta + \varphi + \delta - i) \hfill \\ + c_{\text{w}} \cdot \cos i\cos \theta \sin (\beta + \varphi - i)\cos (\beta + \varphi + \delta - i) \hfill \\ \end{array} \right\} \\ \end{aligned}$$
(26)

Appendix 2: Transformation on the relation between resultant force and failure angle

According to Fig. 3, \(\overline{AB}\), \(\overline{BF}\), \(\overline{AF}\), \(\overline{BD}\), \(\overline{AD}\), and \(\overline{DF}\) do not change when the point C changes, and they are independent of the failure angle α. Based on the sine theorem in ΔABD, ΔABF, and ΔADF, they can be expressed as follows:

$$\left. \begin{array}{l} \overline{AD} = \frac{\cos (i + \varphi )H}{\cos i\sin (\varphi + \beta )},\quad \overline{BD} = \frac{\cos (i - \beta )H}{\cos i\sin (\varphi + \beta )},\quad \overline{AF} = \frac{\cos (i + \varphi )H}{\cos i\cos (i - \delta )}, \hfill \\ \overline{BF} = \frac{\sin (\delta + \varphi )H}{\cos i\cos (i - \delta )},\quad \overline{DF} = \frac{\cos (i + \varphi )\cos (\beta + \varphi + \delta - i)H}{\cos i\cos (i - \delta )\sin (\varphi + \beta )} \hfill \\ \end{array} \right\}$$
(27)

Based on the sine theorem in ΔABC and ΔBCG:

$$\left. \begin{array}{l} \sin (\alpha + i) = \frac{{\overline{AC} }}{{\overline{BC} }}\cos (i - \beta ),\quad\cos (\alpha + \beta ) = \frac{{\overline{AB} }}{{\overline{BC} }}\cos (i - \beta ) \hfill \\ \cos (\alpha - \varphi ) = \frac{{\overline{CG} }}{{\overline{BC} }}\cos (i - \delta ),\quad\sin (i + \alpha - \varphi - \delta ) = \frac{{\overline{BG} }}{{\overline{BC} }}\cos (i - \delta ) \hfill \\ \end{array} \right\}$$
(28)

Based on the cosine theorem in ΔBCG:

$$\overline{BC}^{2} = \overline{BG}^{2} + \overline{CG}^{2} - 2\overline{BG} \cdot \overline{CG} \cos (90^\circ - i + \delta )$$
(29)

Consequently, the following equation can be derived:

$$\sin (\alpha - \varphi ) = \sqrt {1 - \cos^{2} (\alpha - \varphi )} = \frac{{\overline{BG} - \overline{CG} \cdot \sin (i - \delta )}}{{\overline{BC} }}$$
(30)

According to ΔCDG–ΔADF:

$$\left. {\overline{CG} = \frac{{\overline{AF} }}{{\overline{DF} }}(\overline{BD} + \overline{BG} ),\quad \overline{AC} = \frac{{\overline{AD} }}{{\overline{DF} }}(\overline{BG} + \overline{BF} )} \right\}$$
(31)

In addition, by substituting Eqs. (19)–(23) into Eq. (11):

$$\begin{aligned} E_{\text{p}} & = \frac{1}{2}\gamma H^{2} \frac{{1 - k_{\text{v}} }}{\cos \theta } \cdot \frac{{\cos (i - \beta )\sin (i + \alpha )\left[ {\cos (\alpha - \varphi )\cos \theta - \sin (\alpha - \varphi )\sin \theta } \right]}}{{\cos^{2} i\cos (\alpha + \beta )\sin (\alpha + i - \varphi - \delta )}} \\ & \quad +\,q_{0} H\frac{{1 - k_{\text{v}} }}{\cos \theta } \cdot \frac{{\sin (i + \alpha )\left[ {\cos (\alpha - \varphi )\cos \theta - \sin (\alpha - \varphi )\sin \theta } \right]}}{\cos i\cos (\alpha + \beta )\sin (\alpha + i - \varphi - \delta )} \\ & \quad +\, cH \cdot \frac{\cos (i - \beta )\cos \varphi }{\cos i\cos (\alpha + \beta )\sin (\alpha + i - \varphi - \delta )} \\ & \quad +\, c_{\text{w}} H \cdot \frac{\cos (\alpha - \varphi )\cos i - \sin (\alpha - \varphi )\sin i}{\cos i\sin (\alpha + i - \varphi - \delta )} \\ \end{aligned}$$
(32)

By substituting Eqs. (27)–(31) into Eq. (32), the relation between the resultant force and the failure angle can be simplified, as shown in Eq. (13).

Appendix 3: Special cases

3.1 Case of Mononobe–Okabe theory

When c = 0, c w = 0, and q 0 = 0, Eq. (16) can be rewritten as:

$$\begin{aligned} E_{\text{p}} & = 2\sqrt {T_{1} \cdot T_{2} } + T_{3} \\ & = \frac{1}{2}\gamma H^{2} \frac{{\cos (i - \beta )(1 - k_{\text{v}} )}}{{\cos^{2} i\cos \theta \cos^{2} (\beta + \varphi + \delta - i)}} \\ & \quad \times\, \left[ \begin{aligned} \cos (\delta + \theta - i)\cos (i - \beta ) + \sin (\varphi + \delta )\sin (\varphi + \beta - \theta ) \hfill \\ + 2\sqrt {\cos (\delta + \theta - i)\cos (i - \beta )\sin (\varphi + \delta )\sin (\varphi + \beta - \theta )} \hfill \\ \end{aligned} \right] \\ & = \frac{1}{2}\gamma H^{2} \frac{{\cos (i - \beta )(1 - k_{\text{v}} )}}{{\cos^{2} i\cos \theta \cos^{2} (\beta + \varphi + \delta - i)}} \\ & \quad \times\, \left[ {\frac{\cos (\varphi + \delta + \beta - i)\cos (i + \varphi - \theta )}{{\sqrt {\cos (\delta + \theta - i)\cos (i - \beta )} - \sqrt {\sin (\varphi + \delta )\sin (\varphi + \beta - \theta )} }}} \right]^{2} \\ & = \frac{1}{2}\gamma H^{2} \frac{{(1 - k_{\text{v}} )\cos^{2} (i + \varphi - \theta )}}{{\cos^{2} i\cos \theta \cos (\delta + \theta - i)\left[ {1 - \sqrt {\frac{\sin (\varphi + \delta )\sin (\varphi + \beta - \theta )}{\cos (\delta + \theta - i)\cos (i - \beta )}} } \right]^{2} }} \\ \end{aligned}$$
(33)

Equation (33) is the same as the Mononobe–Okabe passive earth pressure.

3.2 Case of Rankine theory

When i = 0, β = 0, δ = 0, c w = 0, q 0 = 0, k h = k v = 0, and θ = 0, Eq. (16) can be rewritten as:

$$\begin{aligned} E_{\text{p}} & = 2\sqrt {T_{1} \cdot T_{2} } + T_{3} = \frac{1}{2}\gamma H^{2} \left( {\frac{1 + \sin \varphi }{\cos \varphi }} \right)^{2} + 2cH\left( {\frac{1 + \sin \varphi }{\cos \varphi }} \right) \\ & = \frac{1}{2}\gamma H^{2} \tan^{2} \left( {45^\circ + \frac{\varphi }{2}} \right) + 2cH\tan \left( {45^\circ + \frac{\varphi }{2}} \right) \\ \end{aligned}$$
(34)

and Eq. (34) is the same as the Rankine passive earth pressure.

Besides, \(\overline{BG}\) can be solved as \(\overline{BG} = H\) according to Eq. (15). Thus, the expression for the critical failure angle (Eq. 18) can be simplified as:

$$\alpha_{\text{cr}} = \tan^{ - 1} \left( {\frac{1 + \sin \varphi }{\cos \varphi }} \right) = 45^\circ + \frac{\varphi }{2}$$
(35)

Equation (35) is known as the critical failure angle of passive soil wedge in Rankine theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Yl., Yang, X., Yang, Gl. et al. A closed-form solution for seismic passive earth pressure behind a retaining wall supporting cohesive–frictional backfill. Acta Geotech. 12, 453–461 (2017). https://doi.org/10.1007/s11440-016-0472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0472-6

Keywords

Navigation