Skip to main content
Log in

Probabilistic multiscale characterization and modeling of organic-rich shale poroelastic properties

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A probabilistic modeling and validation for multiscale poroelastic behavior of organic-rich shale is presented. The methodology is based on the integration of microporomechanics and effective medium theory with uncertainty quantification and propagation from nano- to macroscale. The multiscale model utilizes and improves an existing structural thought model of organic-rich shale material consisting of three levels that span from the nanoscale elementary building blocks of material to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Major model parameters related to the composition and mechanical properties of shale subscale features are modeled as random variables. Probabilistic description of model input parameters are constructed using the maximum entropy principle (MaxEnt) based on available information. Special care is given to the development of probabilistic description of random elasticity tensor of clay phase exhibiting transversely isotropic symmetry properties by employing the theory of random matrix combined with MaxEnt principle. Having the probabilistic descriptions of uncertain model parameters in hand, a Monte Carlo simulation is carried out to propagate the uncertainty across different scales, which allows us to construct a prior probabilistic descriptions of model outputs. The model predictions at different scales are validated against the available experimental measurements from samples of different formations and relevant information in the literature. Furthermore, a global sensitivity analysis is performed to characterize the contribution of each source of uncertainty in the variation of model predictions with respect to different quantities of interest related to macroscale mechanical properties of shale rocks. The integration of experimental characterization, microporomechanical modeling, and uncertainty quantification and propagation proposed in this work provides valuable insights into understanding the effect of subscale compositions and their variation in the upscaled poroelastic properties of shale rocks and improves the robustness and reliability of predictive models for the shale multiscale behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abedi S, Slim M, Hofmann R, Bryndzia T, Ulm FJ (2016) Nanochemo-mechanical signature of organic-rich shales: a coupled indentation-EDX analysis. Acta Geotechnica 11(3):559–572

    Article  Google Scholar 

  2. Abedi S, Slim M, Ulm FJ (2016) Nanomechanics of organic-rich shales: the role of thermal maturity and organic matter content on texture. Acta Geotechnica 11(4):775–787

    Article  Google Scholar 

  3. Abousleiman Y, Cui L (1998) Poroelastic solutions in transversely isotropic media for wellbore and cylinder. Int J Solids Struct 35(34–35):4905–4929

    Article  MATH  Google Scholar 

  4. Ahmadov R, Vanorio T, Mavko G (2009) Confocal laser scanning and atomic-force microscopy in estimation of elastic properties of the organic-rich Bazhenov formation. Lead Edge 28(1):18–23

    Article  Google Scholar 

  5. Aleksandrov K, Ryzhova T (1961) Elastic properties of rock-forming minerals ii: layered silicates. Bull Acad Sci USSR Geophys Ser Engl Transl 12:1165–1168

    Google Scholar 

  6. Bousige C, Ghimbeu CM, Vix-Guterl C, Pomerantz AE, Suleimenova A, Vaughan G, Garbarino G, Feygenson M, Wildgruber C, Ulm FJ et al (2016) Realistic molecular model of kerogen/’s nanostructure. Nat Mater 15(5):576–582

    Article  Google Scholar 

  7. Chen Q, Nezhad MM, Fisher Q, Zhu H (2016) Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. Int J Rock Mech Min Sci 84:95–104

    Google Scholar 

  8. Christensen R, Lo K (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27(4):315–330

    Article  MATH  Google Scholar 

  9. Constantinides G, Chandran KR, Ulm FJ, Van Vliet K (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng, A 430(1):189–202

    Article  Google Scholar 

  10. Cosenza P, Prêt D, Giraud A, Hedan S (2015) Effect of the local clay distribution on the effective elastic properties of shales. Mech Mater 84:55–74

    Article  Google Scholar 

  11. Delafargue A, Ulm FJ (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int J Solids Struct 41(26):7351–7360

    Article  MATH  Google Scholar 

  12. Devroye L (1986) Sample-based non-uniform random variate generation. In: Proceedings of the 18th conference on Winter simulation, pp. 260–265. ACM

  13. Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. Wiley, New York

    Book  MATH  Google Scholar 

  14. Dormieux L, Molinari A, Kondo D (2002) Micromechanical approach to the behavior of poroelastic materials. J Mech Phys Solids 50(10):2203–2231

    Article  MATH  Google Scholar 

  15. Guilleminot J, Soize C (2013) Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media. Multiscale Model Simul 11(3):840–870

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamby D (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154

    Article  Google Scholar 

  17. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59(10):1570–1583

    Article  Google Scholar 

  18. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4):620

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaynes ET (1957) Information theory and statistical mechanics. ii. Phys Rev 108(2):171

    Article  MathSciNet  MATH  Google Scholar 

  20. Katahara K.W (1996) Clay mineral elastic properties. In: SEG Technical Program Expanded Abstracts 1996, pp. 1691–1694. Society of Exploration Geophysicists

  21. Mcneil LE, Grimsditch M (1993) Elastic moduli of muscovite mica. J Phys: Condens Matter 5(11):1681

    Google Scholar 

  22. Monfared S, Ulm FJ (2016) A molecular informed poroelastic model for organic-rich, naturally occurring porous geocomposites. J Mech Phys Solids 88:186–203

    Article  MathSciNet  Google Scholar 

  23. Ortega JA, Ulm FJ, Abousleiman Y (2007) The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotechnica 2(3):155–182

    Article  Google Scholar 

  24. Ortega JA, Ulm FJ, Abousleiman Y (2009) The nanogranular acoustic signature of shale. Geophysics 74(3):D65–D84

    Article  Google Scholar 

  25. Prasad M, Mukerji T, Reinstaedler M, Arnold W et al (2009) Acoustic signatures, impedance microstructure, textural scales, and anisotropy of kerogen-rich shales. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

  26. Qu J (1993) Eshelby tensor for an elastic inclusion with slightly weakened interface. J Appl Mech 60:1048–1048

    Article  MATH  Google Scholar 

  27. Robinet J.C, Sardini P, Coelho D, Parneix J.C, Prêt D, Sammartino S, Boller E, Altmann S (2012) Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France). Water Resources Research 48(5)

  28. Sansalone V, Gagliardi D, Desceliers C, Bousson V, Laredo JD, Peyrin F, Haïat G, Naili S (2016) Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging. Biomech Model Mechanobiol 15(1):111–131

    Article  Google Scholar 

  29. Sayers C (1994) The elastic anisotrophy of shales. J Geophys Res Solid Earth 99(B1):767–774

    Article  Google Scholar 

  30. Seo Y.S, Ichikawa Y, Kawamura K (1999) Stress-strain response of rock-forming minerals by molecular dynamics simulation. J Mater Sci Res 48(3 Appendix), 13–20

  31. Shannon CE (2001) A mathematical theory of communication. ACM Sigmobile Mob Comput Commun Rev 5(1):3–55

    Article  MathSciNet  Google Scholar 

  32. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks—part 1: static and dynamic elastic properties and anisotropy. Geophysics 78(5):D381–D392

    Article  Google Scholar 

  33. Staber B, Guilleminot J (2015) Approximate solutions of Lagrange multipliers for information-theoretic random field models. SIAM/ASA J Uncertain Quantif 3(1):599–621

    Article  MathSciNet  MATH  Google Scholar 

  34. Steiger RP, Leung PK et al (1992) Quantitative determination of the mechanical properties of shales. SPE Drill Eng 7(03):181–185

    Article  Google Scholar 

  35. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  36. Ulm F, Constantinides G, Delafargue A, Abousleiman Y, Ewy R, Duranti L, McCarty D (2005) Material invariant poromechanics properties of shales. Poromechanics III. Biot Centennial (1905–2005), AA Balkema Publishers, London pp. 637–644

  37. Ulm FJ, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotechnica 1(2):77–88

    Article  Google Scholar 

  38. Vasin RN, Wenk HR, Kanitpanyacharoen W, Matthies S, Wirth R (2013) Elastic anisotropy modeling of Kimmeridge shale. J Geophys Res Solid Earth 118(8):3931–3956

    Article  Google Scholar 

  39. Vaughan MT, Guggenheim S (1986) Elasticity of muscovite and its relationship to crystal structure. J Geophys Res 91(B5):4657–4664

    Article  Google Scholar 

  40. Walpole L (1984) Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 391, pp. 149–179. The Royal Society

  41. Wang Z, Wang H, Cates ME (2001) Effective elastic properties of solid clays. Geophysics 66(2):428–440

    Article  Google Scholar 

  42. Yong-Seok S, Ichikawa Y, Kawamura K (1999) Stress-strain response of rock-forming minerals by molecular dynamics simulation. J Soc Mater Sci, Japan 48(3Appendix), 13–20

  43. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Article  Google Scholar 

  44. Zeszotarski JC, Chromik RR, Vinci RP, Messmer MC, Michels R, Larsen JW (2004) Imaging and mechanical property measurements of kerogen via nanoindentation. Geochim Cosmochim Acta 68(20):4113–4119

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial funding from the Crisman-Berg Hughes Institute at the Department of Petroleum Engineering of Texas A&M University. Portions of this research were conducted with the advanced computing resources provided by Texas A&M High Performance Research Computing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Abedi or Arash Noshadravan.

Appendix

Appendix

1.1 Validation and calibration data set

See Tables 6, 7, 8, 9.

Table 6 Calibration data set 1 (CDS-1): indentation moduli defining the effective poroelastic properties of level I (adopted from [1])
Table 7 Calibration data set 2 (CDS-2): components of elasticity tensor (in GPa) defining the effective poroelastic properties of level II obtained from inverting UPV measurements (adopted from [22])
Table 8 Validation data set 1 (VDS-1): indentation moduli at level I [1]
Table 9 Validation data set 2 (VDS-2): components of undrained elasticity tensor (in GPa) at level II [22]

1.2 Schematic representation of the calibration and validation process

See Fig. 12.

Fig. 12
figure 12

Flow of information in the process of calibration, multiscale modeling, and validation. The terms in red and black represent the input parameters to the homogenization schemes, where the ones in red denote those which are obtained from model calibration. The parameters in blue represent the output of homogenization schemes at different length scales

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashhadian, M., Abedi, S. & Noshadravan, A. Probabilistic multiscale characterization and modeling of organic-rich shale poroelastic properties. Acta Geotech. 13, 781–800 (2018). https://doi.org/10.1007/s11440-018-0652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0652-7

Keywords

Navigation