Skip to main content
Log in

Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Reliability analysis approach provides a rational means to quantitatively evaluate the safety of geotechnical structures from a probabilistic perspective. However, it suffers from a known criticism of extensive computational requirements and poor efficiency, which hinders its application in the reliability analysis of earth dam slope stability. Until now, the effects of spatially variable soil properties on the earth dam slope reliability remain unclear. This calls for a novel method to perform reliability analysis of earth dam slope stability accounting for the spatial variability of soil properties. This paper develops an efficient extreme gradient boosting (XGBoost)-based reliability analysis approach for evaluating the earth dam slope failure probability. With the aid of the proposed approach, the failure probability of earth dam slope can be evaluated rationally and efficiently. The proposed approach is illustrated using a practical case adapted from Ashigong earth dam. Results show that the XGBoost-based reliability analysis approach is able to predict the earth dam slope failure probability with reasonable accuracy and efficiency. The coefficient of variations and scale of fluctuations of soil properties affect the earth dam slope failure probability significantly. Moreover, the earth dam slope failure probability is highly dependent on the selection of auto-correlation function (ACF), and the widely used single exponential ACF tends to provide an unconservative estimate in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmed AA (2009) Stochastic analysis of free surface flow through earth dams. Comput Geotech 36(7):1186–1190. https://doi.org/10.1016/j.compgeo.2009.05.005

    Article  Google Scholar 

  2. Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277. https://doi.org/10.1016/S0266-8920(01)00019-4

    Article  Google Scholar 

  3. Au SK, Wang Y (2014) Engineering risk assessment with subset simulation. Wiley, Singapore

    Book  Google Scholar 

  4. Babu GLS, Srivastava A (2010) Reliability analysis of earth dams. J Geotech Geoenviron Eng 136(7):995–998. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000313

    Article  Google Scholar 

  5. Cao ZJ, Wang Y (2014) Bayesian model comparison and selection of spatial correlation functions for soil parameters. Struct Saf 49:10–17. https://doi.org/10.1016/j.strusafe.2013.06.003

    Article  Google Scholar 

  6. Chen TQ, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794. https://doi.org/10.1145/2939672.2939785

  7. Childs EC, Collis-George N (1950) The permeability of porous materials. Proc R Soc Lond Ser A Math Phys Sci 201(1066):392–405. https://doi.org/10.1098/rspa.1950.0068

    Article  Google Scholar 

  8. Cho SE (2010) Probabilistic assessment of slope stability that considers the spatial variability of soil properties. J Geotech Geoenviron Eng 136(7):975–984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309

    Article  Google Scholar 

  9. Cho SE (2012) Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng Geol 133–134:30–39. https://doi.org/10.1016/j.enggeo.2012.02.013

    Article  Google Scholar 

  10. Fan C, Sun Y, Zhao Y, Song M, Wang J (2019) Deep learning-based feature engineering methods for improved building energy prediction. Appl Energy 240:35–45. https://doi.org/10.1016/j.apenergy.2019.02.052

    Article  Google Scholar 

  11. Fenton GA, Griffiths DV (1996) Statistics of free surface flow through stochastic earth dam. J Geotech Eng 122(6):427–436. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(427)

    Article  Google Scholar 

  12. Fenton GA, Griffiths DV (1997) Extreme hydraulic gradient statistics in stochastic earth dam. J Geotech Geoenviron Eng 123(11):995–1000. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:11(995)

    Article  Google Scholar 

  13. Fredlund DG, Rahardjo H, Fredlund MD (2012) Unsaturated soil mechanics in engineering practice. Wiley, Hoboken

    Book  Google Scholar 

  14. GEO-SLOPE International, Ltd. (2012) Geostudio. https://www.geoslope.com/

  15. Gui SX, Zhang RD, Turner JP, Xue XZ (2000) Probabilistic slope stability analysis with stochastic soil hydraulic conductivity. J Geotech Geoenviron Eng 126(1):1–9. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(1)

    Article  Google Scholar 

  16. Hicks MA, Li YJ (2018) Influence of length effect on embankment slope reliability in 3D. Int J Numer Anal Methods Geomech 42(7):891–915. https://doi.org/10.1002/nag.2766

    Article  Google Scholar 

  17. Hu JL, Liu HB (2019) Bayesian network models for probabilistic evaluation of earthquake-induced liquefaction based on CPT and Vs databases. Eng Geol 254:76–88. https://doi.org/10.1016/j.enggeo.2019.04.003

    Article  Google Scholar 

  18. Hu Y, Zhao TY, Wang Y, Choi C, Ng CWW (2019) Direct simulation of two-dimensional isotropic or anisotropic random field from sparse measurement using Bayesian compressive sampling. Stoch Environ Res Risk Assess 33(8–9):1477–1496. https://doi.org/10.1007/s00477-019-01718-7

    Article  Google Scholar 

  19. Huang HW, Wen SC, Zhang J, Chen FY, Martin JR, Wang H (2018) Reliability analysis of slope stability under seismic condition during a given exposure time. Landslides 15(11):2303–2313. https://doi.org/10.1007/s10346-018-1050-9

    Article  Google Scholar 

  20. Huang XX, Chen JQ, Zhu HP (2016) Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation. Struct Saf 59:86–95. https://doi.org/10.1016/j.strusafe.2015.12.003

    Article  Google Scholar 

  21. Ji J, Zhang CS, Gao YF, Kodikara J (2018) Effect of 2D spatial variability on slope reliability: a simplified FORM analysis. Geosci Front 9(6):1631–1638. https://doi.org/10.1016/j.gsf.2017.08.004

    Article  Google Scholar 

  22. Khalilzad M, Gabr MA, Ellen M (2015) Assessment of remedial measures to reduce exceedance probability of performance limit states in embankment dams. Comput Geotech 67:213–222. https://doi.org/10.1016/j.compgeo.2015.02.010

    Article  Google Scholar 

  23. Le TMH, Gallipoli D, Sanchez M, Wheeler SJ (2012) Stochastic analysis of unsaturated seepage through randomly heterogeneous earth embankments. Int J Numer Anal Methods Geomech 36(8):1056–1076

    Article  Google Scholar 

  24. Le TMH, Gallipoli D, Sánchez M, Wheeler S (2015) Stability and failure mass of unsaturated heterogeneous slopes. Can Geotech J 52(11):1747–1761. https://doi.org/10.1139/cgj-2014-0190

    Article  Google Scholar 

  25. Leong EC, Rahardjo H (1997) Permeability functions for unsaturated soils. J Geotech Geoenviron Eng 123(12):1118–1126. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1118)

    Article  Google Scholar 

  26. Li DQ, Jiang SH, Cao ZJ, Zhou W, Zhou CB, Zhang LM (2015) A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng Geol 187:60–72. https://doi.org/10.1016/j.enggeo.2014.12.003

    Article  Google Scholar 

  27. Li DQ, Wang L, Cao ZJ, Qi XH (2019) Reliability analysis of unsaturated slope stability considering SWCC model selection and parameter uncertainties. Eng Geol 260:105207. https://doi.org/10.1016/j.enggeo.2019.105207

    Article  Google Scholar 

  28. Li DQ, Xiao T, Cao ZJ, Zhou CB, Zhang LM (2016) Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation. Landslides 13(2):293–303. https://doi.org/10.1007/s10346-015-0569-2

    Article  Google Scholar 

  29. Li DQ, Zheng D, Cao ZJ, Tang XS, Phoon KK (2016) Response surface methods for slope reliability analysis: review and comparison. Eng Geol 203:3–14. https://doi.org/10.1016/j.enggeo.2015.09.003

    Article  Google Scholar 

  30. Li XY, Zhang LM, Zhang S (2018) Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information. Geosci Front 9(6):1679–1687. https://doi.org/10.1016/j.gsf.2017.09.009

    Article  Google Scholar 

  31. Liu LL, Cheng YM (2016) Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation. Comput Geotech 79:41–54. https://doi.org/10.1016/j.compgeo.2016.05.001

    Article  Google Scholar 

  32. Liu LL, Cheng YM, Jiang SH, Zhang SH, Wang XM, Wu ZH (2017) Effects of spatial autocorrelation structure of permeability on seepage through an embankment on a soil foundation. Comput Geotech 87:62–75. https://doi.org/10.1016/j.compgeo.2017.02.007

    Article  Google Scholar 

  33. Liu LL, Zhang SH, Cheng YM, Liang L (2019) Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines. Geosci Front 10(2):671–682. https://doi.org/10.1016/j.gsf.2018.03.013

    Article  Google Scholar 

  34. Liu Y, Zhang WG, Zhang L, Zhu ZR, Hu J, Wei H (2018) Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods. Geosci Front 9(6):1657–1664. https://doi.org/10.1016/j.gsf.2017.09.003

    Article  Google Scholar 

  35. Montoya-Noguera S, Zhao TY, Hu Y, Wang Y, Phoon KK (2019) Simulation of non-stationary non-Gaussian random fields from sparse measurements using Bayesian compressive sampling and Karhunen–Loève expansion. Struct Saf 79:66–79. https://doi.org/10.1016/j.strusafe.2019.03.006

    Article  Google Scholar 

  36. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522. https://doi.org/10.1029/WR012i003p00513

    Article  Google Scholar 

  37. Phoon KK, Kulhawy FH (1999) Characterization of geotechnical variability. Can Geotech J 36(4):612–624. https://doi.org/10.1139/t99-038

    Article  Google Scholar 

  38. Phoon KK, Santoso A, Quek ST (2010) Probabilistic analysis of soil–water characteristic curves. J Geotech Geoenviron Eng 136:445–455. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000222

    Article  Google Scholar 

  39. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333. https://doi.org/10.1063/1.1745010

    Article  MATH  Google Scholar 

  40. Rodríguez JD, Pérez A, Lozano JA (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32(3):569–575. https://doi.org/10.1109/TPAMI.2009.187

    Article  Google Scholar 

  41. Santoso AM, Phoon KK, Quek ST (2011) Effects of soil spatial variability on rainfall-induced landslides. Comput Struct 89:893–900. https://doi.org/10.1016/j.compstruc.2011.02.016

    Article  Google Scholar 

  42. Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM (2016) Extreme gradient boosting as a method for quantitative structure–activity relationships. J Chem Inf Model 56(12):2353–2360. https://doi.org/10.1021/acs.jcim.6b00591

    Article  Google Scholar 

  43. Sillers WS, Fredlund DG (2001) Statistical assessment of soil–water characteristic curve models for geotechnical engineering. Can Geotech J 38:1297–1313. https://doi.org/10.1139/cgj-38-6-1297

    Article  Google Scholar 

  44. Silvestrini RT, Montgomery DC, Jones B (2013) Comparing computer experiments for the Gaussian process model using integrated prediction variance. Qual Eng 25(2):164–174. https://doi.org/10.1080/08982112.2012.758284

    Article  Google Scholar 

  45. Srivastava A, Babu GLS, Haldar S (2010) Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Eng Geol 110(3–4):93–101. https://doi.org/10.1016/j.enggeo.2009.11.006

    Article  Google Scholar 

  46. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  47. Vanapalli SK, Fredlund DG, Pufahl DE, Clifton AW (1996) Model for the prediction of shear strength with respect to soil suction. Can Geotech J 33(3):379–392. https://doi.org/10.1139/t96-060

    Article  Google Scholar 

  48. Vanmarcke EH (1983) Random fields: analysis and synthesis. MIT Press, Cambridge

    MATH  Google Scholar 

  49. Wang B, Chen YL, Wu C, Peng Y, Song JJ, Liu WJ, Liu X (2018) Empirical and semi-analytical models for predicting peak outflows caused by embankment dam failures. J Hydrol 562:692–702. https://doi.org/10.1016/j.jhydrol.2018.05.049

    Article  Google Scholar 

  50. Wang L, Cao ZJ, Li DQ, Phoon KK, Au SK (2018) Determination of site-specific soil–water characteristic curve from a limited number of test data—a Bayesian perspective. Geosci Front 9(6):1665–1677. https://doi.org/10.1016/j.gsf.2017.10.014

    Article  Google Scholar 

  51. Wang L, Zhang WG, Chen FY (2019) Bayesian approach for predicting soil–water characteristic curve from particle-size distribution data. Energies 12:2992. https://doi.org/10.3390/en12152992

    Article  Google Scholar 

  52. Wang Y, Cao ZJ, Li DQ (2016) Bayesian perspective on geotechnical variability and site characterization. Eng Geol 203:117–125. https://doi.org/10.1016/j.enggeo.2015.08.017

    Article  Google Scholar 

  53. Wang Y, Cao ZJ, Au SK (2010) Efficient Monte Carlo simulation of parameter sensitivity in probabilistic slope stability analysis. Comput Geotech 37(7–8):1015–1022. https://doi.org/10.1016/j.compgeo.2010.08.010

    Article  Google Scholar 

  54. Wang Y, Cao ZJ, Au SK (2011) Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet. Can Geotech J 48(1):162–172. https://doi.org/10.1139/T10-044

    Article  Google Scholar 

  55. Wang Y, Zhao TY, Phoon KK (2018) Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation. Can Geotech J 55(6):862–880. https://doi.org/10.1139/cgj-2017-0254

    Article  Google Scholar 

  56. Wang Y, Zhao TY, Hu Y, Phoon KK (2019) Simulation of random fields with trend from sparse measurements without detrending. J Eng Mech 145(2):1–12. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001560

    Article  Google Scholar 

  57. Wong TT (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit 48(9):2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

    Article  MATH  Google Scholar 

  58. Zhang WG, Goh ATC (2013) Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech 48:82–95. https://doi.org/10.1016/j.compgeo.2012.09.016

    Article  Google Scholar 

  59. Zhang WG, Goh ATC (2016) Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci Front 7(1):45–52. https://doi.org/10.1016/j.gsf.2014.10.003

    Article  Google Scholar 

  60. Zhao LH, Zuo S, Lin YL, Li L, Zhang YB (2016) Reliability back analysis of shear strength parameters of landslide with three-dimensional upper bound limit analysis theory. Landslides 13(4):711–724. https://doi.org/10.1007/s10346-015-0604-3

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1509600), Natural Science Foundation of Chongqing (Nos. cstc2019jcyj-bshX0043 and cstc2019jcyj-bshX0032), Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering (No. 2019018), and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K201900102). The financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wu, C., Tang, L. et al. Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method. Acta Geotech. 15, 3135–3150 (2020). https://doi.org/10.1007/s11440-020-00962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-00962-4

Keywords

Navigation