Skip to main content
Log in

Manipulate light polarizations with metamaterials: From microwave to visible

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

An Erratum to this article was published on 22 September 2010

Abstract

Polarization is an important characteristic of electromagnetic (EM) waves, and efficient manipulations over EM wave polarizations are always desirable in practical applications. Here, we review the recent efforts in controlling light polarizations with metamaterials, at frequencies ranged from microwave to visible. We first presented a 4 × 4 version transfer matrix method (TMM) to study the scatterings by an anisotropic metamaterial of EM waves with arbitrary propagating directions and polarizations. With the 4 × 4 TMM, we discovered several amazing polarization manipulation phenomena based on the reflection geometry and proposed corresponding model metamaterial systems to realize such effects. Metamaterial samples were fabricated with the help of finite-difference-time-domain (FDTD) simulations, and experiments were performed to successfully realize these ideas at both microwave and visible frequencies. Efforts in employing metamaterials to manipulate light polarizations based on the transmission geometry are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and E. Wolf, Principles of Optics, Cambridge: Cambridge University Press, 1999

    Google Scholar 

  2. E. Hecht, Optics, New York: Addison Wesley, 2002

    Google Scholar 

  3. J. A. Kong, Electromagnetic Wave Theory, Cambridge: EMW Publishing, 2005

    Google Scholar 

  4. J. M. Bennett and H. E. Bennet, in: Handbook of Optics, Sec. 10, edited by W. G. Driscoll and W. Vaughan, New York: McGraw-Hill, 1978

    Google Scholar 

  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett., 1996, 76: 4773

    Article  ADS  Google Scholar 

  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech., 1999, 47: 2075

    Article  ADS  Google Scholar 

  7. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett., 2000, 84: 4184

    Article  ADS  Google Scholar 

  8. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, Phys. Rev. Lett., 2005, 94: 063901

    Article  ADS  Google Scholar 

  9. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, Phys. Rev. Lett., 2005, 95: 137404

    Article  ADS  Google Scholar 

  10. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, Opt. Lett., 2005, 30: 3356

    Article  ADS  Google Scholar 

  11. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett., 2006, 31: 1800

    Article  ADS  Google Scholar 

  12. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett., 2007, 32: 53

    Article  ADS  Google Scholar 

  13. V. G. Veselago, Sov. Phys. Usp., 1968, 10: 509

    Article  ADS  Google Scholar 

  14. R. A. Shelby, D. R. Smith, and S. Schultz, Science, 2001, 292: 77

    Article  ADS  Google Scholar 

  15. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science, 2004, 305: 788

    Article  ADS  Google Scholar 

  16. J. B. Pendry, Phys. Rev. Lett., 2000, 85: 3966

    Article  ADS  Google Scholar 

  17. N. Fang, H. Lee, C. Sun, and X. Zhang, Science, 2005, 308: 534

    Article  ADS  Google Scholar 

  18. A. Ono, J. Kato, and S. Kawata, Phys. Rev. Lett., 2005, 95: 267407

    Article  ADS  Google Scholar 

  19. P. A. Belov, Y. Hao, and S. Sudhakaran, Phys. Rev. B, 2006, 73: 033108

    Article  ADS  Google Scholar 

  20. X. H. Hu, Z. H. Hang, J. Li, J. Zi, and C. T. Chan, Phys. Rev. E, 2006, 73: 015602

    Article  ADS  Google Scholar 

  21. C. Y. Luo, M. Ibanescu, E. J. Reed, S. G. Johnson, and J. D. Joannopoulos, Phys. Rev. Lett., 2006, 96: 043903

    Article  ADS  Google Scholar 

  22. W. H. Wang, X. Q, Huang, L. Zhou, and C. T. Chan, Opt. Lett., 2008, 33: 369

    Article  ADS  Google Scholar 

  23. J. Lu, T. Grzegorczyk, Y. Zhang, J. Pacheco Jr., B. I. Wu, J. Kong, and M. Chen, Opt. Express, 2003, 11: 723–734

    Article  ADS  Google Scholar 

  24. Y. O. Averkov and V. M. Yakovenko, Phys. Rev. B, 2005, 72: 205110

    Article  ADS  Google Scholar 

  25. B. I. Wu, J. Lu, J. Kong, and M. Chen, J. Appl. Phys., 2007, 102: 114907

    Article  ADS  Google Scholar 

  26. Z. Y. Duan, B. I. Wu, J. Lu, J. A. Kong, and M. Chen, Opt. Express, 2008, 16: 18479

    Article  ADS  Google Scholar 

  27. N. Engheta, IEEE Antennas Wireless Propag. Lett., 2002, 1: 10

    Article  ADS  Google Scholar 

  28. L. Zhou, H. Q. Li, Y. Q. Qin, Z. Y. Wei, and C. T. Chan, Appl. Phys. Lett., 2005, 86: 101101

    Article  ADS  Google Scholar 

  29. H. Li, J. M. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, and C. T. Chan, Appl. Phys. Lett., 2006, 89: 104101

    Article  ADS  Google Scholar 

  30. U. Leonhardt, Science, 2006, 312: 1777

    Article  MathSciNet  ADS  Google Scholar 

  31. J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312: 1780

    Article  MathSciNet  ADS  Google Scholar 

  32. A. J. Ward and J. B. Pendry, J. Mod. Opt., 1996, 43: 773

    MATH  MathSciNet  ADS  Google Scholar 

  33. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, Photon. Nanostruct. Fundam. Appl., 2008, 6: 87

    Article  ADS  Google Scholar 

  34. H. Y. Chen and C. T. Chan, Appl. Phys. Lett., 2007, 90: 241105

    Article  ADS  Google Scholar 

  35. M. Yan, W. Yan, and M. Qiu, Phys. Rev. B, 2008, 78: 125113

    Article  ADS  Google Scholar 

  36. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, Opt. Express, 2008, 16: 18545

    Article  ADS  Google Scholar 

  37. J. M. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett., 2007, 99: 063908

    Article  ADS  Google Scholar 

  38. J. M. Hao and L. Zhou, Phys. Rev. B, 2008, 77: 094201

    Article  ADS  Google Scholar 

  39. J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Phys. Rev. A, 2009, 80: 023807

    Article  ADS  Google Scholar 

  40. J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett., 2008, 93: 251903

    Article  ADS  Google Scholar 

  41. M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys., 2008, 103: 053102

    Article  ADS  Google Scholar 

  42. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett., 2008, 92: 131111

    Article  ADS  Google Scholar 

  43. T. Li, H. Liu, S. M. Wang, X. G Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett., 2008, 93: 021110

    Article  ADS  Google Scholar 

  44. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Phys. Rev. Lett., 2009, 102: 113902

    Article  ADS  Google Scholar 

  45. J. Yelk, M. Sukharev, and T. Seideman, J. Chem. Phys., 2008, 129: 064706

    Article  ADS  Google Scholar 

  46. J. X. Cao, H. Liu, T. Li, S. M. Wang, T. Q. Li, S. N. Zhu, and X. Zhang, J. Opt. Soc. Am. B, 2009, 26: B96

    Article  ADS  Google Scholar 

  47. J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, Opt. Express, 2009, 17: 7640

    Article  ADS  Google Scholar 

  48. D. R. Smith and D. Schurig, Phys. Rev. Lett., 2003, 90: 077405

    Article  ADS  Google Scholar 

  49. L. Zhou, C. T. Chan, and P. Sheng, Phys. Rev. B, 2003, 68: 115424

    Article  ADS  Google Scholar 

  50. S. L. Sun, X. Q. Huang, and L. Zhou, Phys. Rev. E, 2007, 75: 066602

    Article  ADS  Google Scholar 

  51. L. B. Hu and S. T. Chui, Phys. Rev. B, 2002, 66: 085108

    Article  ADS  Google Scholar 

  52. Q. Cheng and T. J. Cui, Appl. Phys. Lett., 2005, 87: 1741102

    ADS  Google Scholar 

  53. T. Jiang, J. M. Zhao, and Y. J. Feng, J. Phys. D: Appl. Phys., 2007, 40: 1821

    Article  ADS  Google Scholar 

  54. P. Yeh, Optical Wave in Layered Media, New York: Wiley, 1988

    Google Scholar 

  55. K. Busch, C. T. Chan, and C. M. Soukoulis, in: Photonic Band Gap Materials, edited by C. M. Soukoulis, Dordrecht: Kluwer, 1996

    Google Scholar 

  56. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett., 2005, 94: 243905

    Article  ADS  Google Scholar 

  57. For the case of 0 ≠ 0°, the electric field of s-polarized wave has \( E||\hat e_s = - \sin \varphi \hat x + \cos \varphi \hat y \), and the p-polarized wave has \( E||\hat e_p = \cos \theta \cos \varphi \hat x + \cos \theta \sin \varphi \hat y - \sin \theta \hat z \).

  58. A. Taflove, Computational Electrodynamics: The Finite-Difference-Time-Domain Method, Norwood: Artech House INC, 2000

    MATH  Google Scholar 

  59. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, Appl. Phys. Lett., 2000, 77: 2246

    Article  ADS  Google Scholar 

  60. P. Markos and C. M. Soukoulis, Phys. Rev. E, 2002, 65: 036622

    Article  ADS  Google Scholar 

  61. N. Katsarakis, T. Koschny, and M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett., 2004, 84: 2943

    Article  ADS  Google Scholar 

  62. D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexópolous, and E. Yablonovitch, IEEE Trans. MicrowaveTheory Tech., 1999, 47: 2059

    Article  ADS  Google Scholar 

  63. F. Yang and Y. Rahmat-Samii, IEEE Trans. Antennas Propag., 2003, 51: 2691

    Article  ADS  Google Scholar 

  64. H. Mosallaei and K. Sarabandi, IEEE Trans. Antennas Propag., 2004, 52: 2403

    Article  ADS  Google Scholar 

  65. W. J. Wen, L. Zhou, J. Li, W. Ge, C. T. Chan, and P. Sheng, Phys. Rev, Lett., 2002, 89: 223901

    Article  ADS  Google Scholar 

  66. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett., 2003, 83: 3257

    Article  ADS  Google Scholar 

  67. J. M. Hao, L. Zhou, and C. T. Chan, Appl. Phys. A, 2007, 87: 281

    Article  ADS  Google Scholar 

  68. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, London: Butterworth-Heinemann Ltd., 1984

    Google Scholar 

  69. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B, 2002, 65: 195104

    Article  ADS  Google Scholar 

  70. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, J. Nonlinear, Opt. Phys. Mater., 2002, 11: 65

    Article  ADS  Google Scholar 

  71. Uday K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, Opt. Express, 2006, 14: 7872

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou  (周磊).

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11467-010-0146-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Jm., Qiu, M. & Zhou, L. Manipulate light polarizations with metamaterials: From microwave to visible. Front. Phys. China 5, 291–307 (2010). https://doi.org/10.1007/s11467-010-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-010-0005-y

Keywords

Navigation