Skip to main content
Log in

Optomechanical sensing with on-chip microcavities

  • Review Article
  • Frontiers of Physics
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical microcavity research, that we are able to manipulate and utilize this coupling process. When a high Q microcavity couples to a mechanical resonator, they can consolidate into an optomechanical system. Benefitting from the unique characteristics offered by optomechanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanics, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and notes

  1. J. Kepler, De Cometis, 1619

  2. Actually Kepler’s conjecture is not fully accurate. From the viewpoint of modern astronomy, the formation and deflection of comet tails are due to the forces from both radiation pressure and solar wind.

  3. A. Ashkin, History of optical trapping and manipulation of small-neutral particle, atoms, and molecules, IEEE J. Sel. Top. Quantum Electron., 2000, 6(6): 841

    Google Scholar 

  4. V. B. Braginsky and A. B. Manukin, Measurement of weak forces in physics experiments, Chicago: University of Chicago Press, 1977

    Google Scholar 

  5. K. J. Vahala, Optical microcavities, Nature, 2003, 424(6950): 839

    ADS  Google Scholar 

  6. J. Ma and M. L. Povinelli, Applications of optomechanical effects for on-chip manipulation of light signals, Curr. Opin. Solid State Mater. Sci., 2012, 16(2): 82

    Google Scholar 

  7. H. Cai, K. Xu, A. Liu, Q. Fang, M. Yu, G. Lo, and D. Kwong, Nano-opto-mechanical actuator driven by gradient optical force, Appl. Phys. Lett., 2012, 100(1): 013108

    ADS  Google Scholar 

  8. X. Guo, C. L. Zou, X. F. Ren, F. W. Sun, and G. C. Guo, Broadband opto-mechanical phase shifter for photonic integrated circuits, Appl. Phys. Lett., 2012, 101(7): 071114

    ADS  Google Scholar 

  9. T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express, 2007, 15(25): 17172

    ADS  Google Scholar 

  10. T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science, 2008, 321(5893): 1172

    ADS  Google Scholar 

  11. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., 2010, 82(2): 1155

    MathSciNet  ADS  MATH  Google Scholar 

  12. P. Meystre, A short walk through quantum optomechanics, Annalen der Physik, 2013, 525(3): 215

    ADS  MATH  Google Scholar 

  13. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, arXiv: 1303.0733, 2013

    Google Scholar 

  14. D. Van Thourhout and J. Roels, Optomechanical device actuation through the optical gradient force, Nat. Photonics, 2010, 4(4): 211

    ADS  Google Scholar 

  15. L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Comput. Netw., 2010, 54(15): 2787

    MATH  Google Scholar 

  16. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics, CRC Press, 2009

    Google Scholar 

  17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature, 2003, 421(6926): 925

    ADS  Google Scholar 

  18. B. B. Li, Y. F. Xiao, C. L. Zou, X. F. Jiang, Y. C. Liu, F. W. Sun, Y. Li, and Q. Gong, Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators, Appl. Phys. Lett., 2012, 100(2): 021108

    ADS  Google Scholar 

  19. Z. P. Liu, X. F. Jiang, Y. Li, Y. F. Xiao, L. Wang, J. L. Ren, S. J. Zhang, H. Yang, and Q. Gong, High-Q asymmetric polymer microcavities directly fabricated by two-photon polymerization, Appl. Phys. Lett., 2013, 102(22): 221108

    ADS  Google Scholar 

  20. Y.-F. Xiao, X.-F. Jiang, Q.-F. Yang, L. Wang, K. Shi, Y. Li, and Q. Gong, Tunneling-induced transparency in a chaotic microcavity, Laser & Photonics Reviews, 2013, 7(5): L51

    Google Scholar 

  21. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Whispering-gallery mode microdisk lasers, Appl. Phys. Lett., 1992, 60: 289

    ADS  Google Scholar 

  22. H. J. Moon, Y. T. Chough, and K. An, Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys. Rev. Lett., 2000, 85(15): 3161

    ADS  Google Scholar 

  23. X. F. Jiang, Y. F. Xiao, C. L. Zou, L. He, C. H. Dong, B. B. Li, Y. Li, F. W. Sun, L. Yang, and Q. Gong, Highly unidirectional emission and ultralow-threshold lasing from onchip ultrahigh-Q microcavities, Adv. Mater., 2012, 24(35): OP260

    Google Scholar 

  24. L. He, S. K. Özdemir, and L. Yang, Whispering gallery microcavity lasers, Laser & Photonics Reviews, 2013, 7: 60

    Google Scholar 

  25. B. B. Li, Y. F. Xiao, M. Y. Yan, W. R. Clements, and Q. Gong, Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity, Opt. Lett., 2013, 38(11): 1802

    ADS  Google Scholar 

  26. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature, 2005, 435(7040): 325

    ADS  Google Scholar 

  27. H. Rokhsari and K. J. Vahala, Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics, Phys. Rev. Lett., 2004, 92(25): 253905

    ADS  Google Scholar 

  28. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, Ultralow-loss optical delay line on a silicon chip, Nat. Commun., 2012, 3: 867

    ADS  Google Scholar 

  29. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, 2004, 431(7012): 1081

    ADS  Google Scholar 

  30. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nat. Photonics, 2009, 4(1): 46

    ADS  Google Scholar 

  31. F. Vollmer and S. Arnold, Whispering-gallery-mode biosensing: Label-free detection down to single molecules, Nat. Methods, 2008, 5(7): 591

    Google Scholar 

  32. X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator, Phys. Rev. A, 2011, 83(2): 023803

    ADS  Google Scholar 

  33. F. Vollmer and L. Yang, Review Label-free detection with high-Q microcavities: A review of biosensing mechanisms for integrated devices, Nanophotonics, 2012, 1(3–4): 267

    ADS  Google Scholar 

  34. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, Detection of single nanoparticles and lentiviruses using microcavity resonance broadening, Adv. Mater., 2013, DOI: 10.1002/adma201302572

    Google Scholar 

  35. A. N. Cleland and M. L. Roukes, A nanometre-scale mechanical electrometer, Nature, 1998, 392: 160

    ADS  Google Scholar 

  36. K. Jensen, K. Kim, and A. Zettl, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., 2008, 3(9): 533

    ADS  Google Scholar 

  37. J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol., 2011, 6(4): 203

    ADS  Google Scholar 

  38. U. Krishnamoorthy, G. R. III Olsson, M. Bogart, D. Baker, T. Carr, T. P. Swiler, and P. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys., 2008, 145: 283

    Google Scholar 

  39. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997

    Google Scholar 

  40. A. N. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications, Springer-Verlag, 2003

    Google Scholar 

  41. C. Gardiner and P. Zoller, Quantum Noise, Springer, 2004

    MATH  Google Scholar 

  42. J. Rosenberg, Q. Lin, and O. Painter, Static and dynamic wavelength routing via the gradient optical force, Nat. Photonics, 2009, 3(8): 478

    ADS  Google Scholar 

  43. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, Observation and characterization of an optical spring, Phys. Rev. A, 2004, 69(5): 051801

    ADS  Google Scholar 

  44. A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Phys. Rev. A, 2004, 69(2): 023809

    ADS  Google Scholar 

  45. Y. F. Yu, J. B. Zhang, T. Bourouina, and A. Q. Liu, Optical-force-induced bistability in nanomachined ring resonator systems, Appl. Phys. Lett., 2012, 100(9): 093108

    ADS  Google Scholar 

  46. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, Controlling photonic structures using optical forces, Nature, 2009, 462(7273): 633

    ADS  Google Scholar 

  47. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett., 2006, 97(24): 243905

    ADS  Google Scholar 

  48. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, 2006, 444(7115): 71

    ADS  Google Scholar 

  49. Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett., 2013, 110(15): 153606

    ADS  Google Scholar 

  50. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett., 2005, 94(22): 223902

    ADS  Google Scholar 

  51. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett., 2005, 95(3): 033901

    ADS  Google Scholar 

  52. K. Zandi, B. Wong, J. Zou, R. V. Kruzelecky, W. Jamroz, and Y. A. Peter, In-plane silicon-on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors, in: IEEE 23rd International Conference on Micro Electro Mechanical Systems, IEEE, 2010: 839–842

    Google Scholar 

  53. M. W. Pruessner, T. H. Stievater, J. B. Khurgin, and W. S. Rabinovich, Integrated waveguide-DBR microcavity optomechanical system, Opt. Express, 2011, 19(22): 21904

    ADS  Google Scholar 

  54. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, Ultra-compact Si-SiO2 microring resonator optical channel dropping filters, IEEE Photon. Technol. Lett., 1998, 10(4): 549

    ADS  Google Scholar 

  55. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects, Opt. Express, 2007, 15(19): 11934

    ADS  Google Scholar 

  56. W. H. P. Pernice, M. Li, and H. X. Tang, Optomechanical coupling in photonic crystal supported nanomechanical waveguides, Opt. Express, 2009, 17(15): 12424

    ADS  Google Scholar 

  57. M. Li, W. H. P. Pernice, and H. X. Tang, Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities, Appl. Phys. Lett., 2010, 97(18): 183110

    ADS  Google Scholar 

  58. A. N. Oraevsky, Whispering-gallery waves, Quantum Electron., 2002, 32(5): 377

    ADS  Google Scholar 

  59. A. B. Matsko and V. S. Ilchenko, Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top. Quantum Electron., 2006, 12(1): 3

    Google Scholar 

  60. G. Anetsberger, R. Rivi’ere, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Ultralow-dissipation optomechanical resonators on a chip, Nat. Photonics, 2008, 2(10): 627

    Google Scholar 

  61. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, Mechanical oscillation and cooling actuated by the optical gradient force, Phys. Rev. Lett., 2009, 103(10): 103601

    ADS  Google Scholar 

  62. X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, High-Q double-disk microcavities for cavity optomechanics, Opt. Express, 2009, 17(23): 20911

    ADS  Google Scholar 

  63. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichen- field, K. J. Vahala, and O. Painter, Coherent mixing of mechanical excitations in nano-optomechanical structures, Nat. Photonics, 2010, 4(4): 236

    ADS  Google Scholar 

  64. S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, A silicon nitride microdisk resonator with a 40-nmthin horizontal air slot, Opt. Express, 2010, 18(11): 11209

    ADS  Google Scholar 

  65. S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, Label-free optical biosensing using a horizontal airslot SiNx microdisk resonator, Opt. Express, 2010, 18(20): 20638

    ADS  Google Scholar 

  66. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, 2008, 452(7183): 72

    ADS  Google Scholar 

  67. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., 2009, 5(12): 909

    Google Scholar 

  68. C. L. Zou, X. B. Zou, F. W. Sun, Z. F. Han, and G. C. Guo, Room-temperature steady-state optomechanical entanglement on a chip, Phys. Rev. A, 2011, 84(3): 032317

    ADS  Google Scholar 

  69. E. Gavartin, P. Verlot, and T. J. Kippenberg, A hybrid onchip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol., 2012, 7(8): 509

    ADS  Google Scholar 

  70. H. K. Li, Y. C. Liu, X. Yi, C. L. Zou, X. X. Ren, and Y. F. Xiao, Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling, Phys. Rev. A, 2012, 85(5): 053832

    ADS  Google Scholar 

  71. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity, Opt. Express, 2009, 17(5): 3802

    ADS  Google Scholar 

  72. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, 2009, 459(7246): 550

    ADS  Google Scholar 

  73. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature, 2009, 462(7269): 78

    ADS  Google Scholar 

  74. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs, Phys. Rev. Lett., 2006, 97(2): 023903

    ADS  Google Scholar 

  75. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity, Nano Lett., 2012, 12(5): 2299

    ADS  Google Scholar 

  76. G. Bahl, K. H. Kim,W. Lee, J. Liu, X. Fan, and T. Carmon, Brillouin cavity optomechanics with microfluidic devices, Nat. Commun., 2013, 4: 1994

    ADS  Google Scholar 

  77. V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, Enhancing optical gradient forces with metamaterials, Phys. Rev. Lett., 2013, 110(5): 057401

    ADS  Google Scholar 

  78. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, Nano Lett., 2011, 11(2): 791

    ADS  Google Scholar 

  79. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, A high-resolution microchip optomechanical accelerometer, Nat. Photonics, 2012, 6(11): 768

    ADS  Google Scholar 

  80. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators, Opt. Express, 2005, 13(20): 8286

    ADS  Google Scholar 

  81. V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, Coupling and tunability of optical whispering-gallery modes: A basis for coordinate meter, Opt. Commun., 1994, 107(1–2): 41

    ADS  Google Scholar 

  82. J. L. Arlett, E. B. Myers, and M. L. Roukes, Comparative advantages of mechanical biosensors, Nat. Nanotechnol., 2011, 6(4): 203

    ADS  Google Scholar 

  83. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Cantilever-like micromechanical sensors., Rep. Prog. Phys., 2011, 74(3): 036101

    ADS  Google Scholar 

  84. Y. Liu, H. Miao, V. Aksyuk, and K. Srinivasan, Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy, Opt. Express, 2012, 20(16): 18268

    ADS  Google Scholar 

  85. G. I. Harris, D. L. McAuslan, T. M. Stace, A. C. Doherty, and W. P. Bowen, Minimum requirements for feedback enhanced force sensing, arXiv: 1303.1589, 2013

    Google Scholar 

  86. D. Woolf, P. C. Hui, E. Iwase, M. Khan, A. W. Rodriguez, P. Deotare, I. Bulu, S. G. Johnson, F. Capasso, and M. Loncar, Optomechanical and photothermal interactions in suspended photonic crystal membranes, Opt. Express, 2013, 21(6): 7258

    ADS  Google Scholar 

  87. F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, Casimir forces and quantum electrodynamical torques: Physics and nanomechanics, IEEE J. Sel. Top. Quantum Electron., 2007, 13(2): 400

    Google Scholar 

  88. A. W. Rodriguez, F. Capasso, and S. G. Johnson, The Casimir effect in microstructured geometries, Nat. Photonics, 2011, 5(4): 211

    ADS  Google Scholar 

  89. J. J. Li and K. D. Zhu, Nonlinear optical mass sensor with an optomechanical microresonator, Appl. Phys. Lett., 2012, 101(14): 141905

    ADS  Google Scholar 

  90. F. Liu and M. Hossein-Zadeh, Mass sensing with optomechanical oscillation, IEEE Sens. J., 2013, 13(1): 146

    Google Scholar 

  91. C. Gmachl, F. Capasso, E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science, 1998, 280(5369): 1556

    ADS  Google Scholar 

  92. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, From the cover: Whispering-gallery mode resonators for highly unidirectional laser action, Proc. Natl. Acad. Sci. USA, 2010, 107(52): 22407

    ADS  Google Scholar 

  93. C. L. Zou, F. J. Shu, F. W. Sun, Z. J. Gong, Z. F. Han, and G. C. Guo, Theory of free space coupling to high-Q whispering gallery modes, Opt. Express, 2013, 21(8): 9982

    ADS  Google Scholar 

  94. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, Microring resonator channel dropping filters, J. Lightwave Technol., 1997, 15(6): 998

    ADS  Google Scholar 

  95. J. P. Laine, B. E. Little, D. R. Lim, H. C. Tapalian, L. C. Kimerling, and H. A. Haus, Microsphere resonator mode characterization by pedestal anti-resonant reflecting waveguide coupler, IEEE Photon. Technol. Lett., 2000, 12(8): 1004

    ADS  Google Scholar 

  96. J. P. Laine, C. Tapalian, B. Little, and H. Haus, Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler, Sens. Actuators A Phys., 2001, 93(1): 1

    Google Scholar 

  97. M. A. Perez and A. M. Shkel, Design and demonstration of a bulk micromachined Fabry-Pérot μg-resolution accelerometer, IEEE Sens. J., 2007, 7(12): 1653

    Google Scholar 

  98. U. Krishnamoorthy, G. R. III Olsson, M. S. Bogart, D. W. Baker, T. P. Carr, T. P. Swiler, and P. J. Clews, In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sens. Actuators A Phys., 2008, 145–146: 283

    Google Scholar 

  99. D. N. Hutchison and S. A. Bhave, Z-axis optomechanical accelerometer, in: IEEE 25th International Conference on Micro Electro Mechanical Systems, IEEE, 2012: 615–619

    Google Scholar 

  100. P. H. Kim, C. Doolin, B. D. Hauer, A. J. MacDonald, M. R. Freeman, P. E. Barclay, and J. P. Davis, Nanoscale torsional optomechanics, Appl. Phys. Lett., 2013, 102(5): 053102

    ADS  Google Scholar 

  101. J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, Nanotorsional resonator torque magnetometry, Appl. Phys. Lett., 2010, 96(7): 072513

    ADS  Google Scholar 

  102. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett., 2012, 108(12): 120801

    ADS  Google Scholar 

  103. S. Lin, E. Schonbrun, and K. Crozier, Optical manipulation with planar silicon microring resonators, Nano Lett., 2010, 10(7): 2408

    ADS  Google Scholar 

  104. H. Cai and A. W. Poon, Optical manipulation and transport of microparticles on silicon nitride microring-resonatorbased add-drop devices, Opt. Lett., 2010, 35(17): 2855

    ADS  Google Scholar 

  105. H. Cai and A. W. Poon, Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator, Opt. Lett., 2011, 36(21): 4257

    ADS  Google Scholar 

  106. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, Taking whispering gallery-mode single virus detection and sizing to the limit, Appl. Phys. Lett., 2012, 101(4): 043704

    ADS  Google Scholar 

  107. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection, Appl. Phys. Lett., 2011, 98(24): 243104

    ADS  Google Scholar 

  108. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity, J. Biophoton., 2012, 5(8–9): 629

    Google Scholar 

  109. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides, Nature, 2009, 457(7225): 71

    ADS  Google Scholar 

  110. S. Lin and K. B. Crozier, Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles, Lab on a Chip, 2011, 11(23): 4047

    Google Scholar 

  111. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006

    Google Scholar 

  112. J. D. Jackson, Classical Electrodynamics, Wiley, 1998

    Google Scholar 

  113. J. P. Gordon, Radiation forces and momenta in dielectric media, Phys. Rev. A, 1973, 8(1): 14

    ADS  Google Scholar 

  114. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 1986, 11(5): 288

    ADS  Google Scholar 

  115. Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, High-Q exterior Whispering-Gallery modes in a metal-coated microresonator, Phys. Rev. Lett., 2010, 105(15): 153902

    ADS  Google Scholar 

  116. Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, and Q. Gong, Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator, Phys. Rev. A, 2012, 85(3): 031805

    ADS  Google Scholar 

  117. L. Zhou, X. Sun, X. Li, and J. Chen, Miniature microring resonator sensor based on a hybrid plasmonic waveguide, Sensors, 2011, 11(12): 6856

    Google Scholar 

  118. Y. W. Hu, B. B. Li, Y. X. Liu, Y. F. Xiao, and Q. Gong, Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping, Opt. Commun., 2013, 291: 380

    ADS  Google Scholar 

  119. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., 2007, 99(9): 093902

    ADS  Google Scholar 

  120. M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett., 2013, 111(7): 073603

    ADS  Google Scholar 

  121. M. A. Lemonde, N. Didier, and A. A. Clerk, Nonlinear interaction effects in a strongly driven optomechanical cavity, Phys. Rev. Lett., 2013, 111(5): 053602

    ADS  Google Scholar 

  122. K. Børkje, A. Nunnenkamp, J. D. Teufel, and S. M. Girvin, Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett., 2013, 111(5): 053603

    ADS  Google Scholar 

  123. Y. C. Liu, Y. F. Xiao, Y. L. Chen, X. C. Yu, and Q. Gong, Parametric down-conversion and polariton pair generation in optomechanical systems, Phys. Rev. Lett., 2013, 111(8): 083601

    ADS  Google Scholar 

  124. J. Capmany and D. Novak, Microwave photonics combines two worlds, Nat. Photonics, 2007, 1(6): 319

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Feng Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YW., Xiao, YF., Liu, YC. et al. Optomechanical sensing with on-chip microcavities. Front. Phys. 8, 475–490 (2013). https://doi.org/10.1007/s11467-013-0384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0384-y

Keywords

Navigation