Skip to main content
Log in

Physical basis for the symmetries in the Friedmann–Robertson–Walker metric

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Modern cosmological theory is based on the Friedmann–Robertson–Walker (FRW) metric. Often written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes its elegant and highly practical formulation to the cosmological principle and Weyl’s postulate, upon which it is founded. However, there is physics behind such symmetries, and not all of it has yet been recognized. In this paper, we derive the FRW metric coefficients from the general form of the spherically symmetric line element and demonstrate that, because the co-moving frame also happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as FRW only when its equation of state is ρ+3p = 0, in terms of the total pressure p and total energy density ρ. There is now compelling observational support for this conclusion, including the Alcock–Paczy´nski test, which shows that only an FRW cosmology with zero active mass is consistent with the latest model-independent baryon acoustic oscillation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56(5), 455 (1939)

    Article  ADS  MATH  Google Scholar 

  2. G. C. McVittie, Gravitational collapse to a small volume, Astrophys. J. 140, 401 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136(2B), B571 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. I. H. Thompson and G. F. Whitrow, Time-dependent internal solutions for spherically symmetrical bodies in general relativity (I): Adiabatic collapse, Mon. Not. R. Astron. Soc. 136(2), 207 (1967)

    Article  ADS  Google Scholar 

  5. G. Birkhoff, Relativity and Modern Physics, Harvard University Press, 1923

    MATH  Google Scholar 

  6. H. P. Robertson, On the foundations of relativistic cosmology, Proc. Natl. Acad. Sci. USA 15(11), 822 (1929)

    Article  ADS  MATH  Google Scholar 

  7. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972

    Google Scholar 

  8. F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)

    Article  ADS  Google Scholar 

  9. D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Observational probes of cosmic acceleration, Phys. Rep. 530(2), 87 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of W and L from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)

    Article  ADS  Google Scholar 

  11. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  12. M. Kowalski, D. Rubin, G. Aldering, R. J. Agostinho, A. Amadon, et al., Improved cosmological constraints from new, old, and combined supernova data sets, Astrophys. J. 686(2), 749 (2008)

    Article  ADS  Google Scholar 

  13. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, et al., The Hubble space telescope cluster supernova survey (v): Improving the dark-energy constraints above z > 1 and building an early-type-hosted supernova sample, Astrophys. J. 746(1), 85 (2012)

    Article  ADS  Google Scholar 

  14. C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First–Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground emission, Astrophys. J. Suppl. 148(1), 97 (2003)

    Article  ADS  Google Scholar 

  15. D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First–Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148(1), 175 (2003)

    Article  ADS  Google Scholar 

  16. P. A. R. Ade, et al. (Planck Collaboration), Planck 2013 results (XXIII): Isotropy and statistics of the CMB, Astron. Astrophys. 571, A23 (2014)

    Article  Google Scholar 

  17. W. C. Hernandez and C. W. Misner, Observer time as a coordinate in relativistic spherical hydrodynamics, Astrophys. J. 143, 452 (1966)

    Article  ADS  Google Scholar 

  18. M. M. May and R. H. White, Hydrodynamic calculations of general-relativistic collapse, Phys. Rev. 141(4), 1232 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55(4), 364 (1939)

    Article  ADS  MATH  Google Scholar 

  20. J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55(4), 374 (1939)

    Article  ADS  MATH  Google Scholar 

  21. H. Stephani, D. Kramer, M. MacCallum, and C. Hoenselaers, Exact Solutions to Einstein’s Field Equations, Cambridge University Press, 2009

    MATH  Google Scholar 

  22. F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)

    Article  ADS  MATH  Google Scholar 

  23. F. Melia and A. Shevchuk, The R h = ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2011)

    Article  ADS  Google Scholar 

  24. R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573(1), 37 (2002)

    Article  ADS  Google Scholar 

  25. F. Melia and R. S. Maier, Cosmic chronometers in the R h = ct universe, Mon. Not. R. Astron. Soc. 432(4), 2669 (2013)

    Article  ADS  Google Scholar 

  26. B. E. Schaefer, Gamma-ray burst Hubble diagram to z = 4.5, Astrophys. J. 583(2), L67 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Ghirlanda, G. Ghisellini, and D. Lazzati, The collimationcorrected gamma-ray burst energies correlate with the peak energy of their νFν spectrum, Astrophys. J. 616(1), 331 (2004)

    Article  ADS  Google Scholar 

  28. E. Liang and B. Zhang, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications, Astrophys. J. 633(2), 611 (2005)

    Article  ADS  Google Scholar 

  29. J. J. Wei, X. F. Wu, and F. Melia, The gamma-ray burst Hubble diagram and its implications for cosmology, Astrophys. J. 772(1), 43 (2013)

    Article  ADS  Google Scholar 

  30. F. Melia, High-z quasars in the R h = ct universe, Astrophys. J. 764(1), 72 (2013)

    Article  ADS  Google Scholar 

  31. J. J. Wei, X. F. Wu, F. Melia, and R. S. Maier, A comparative analysis of the supernova legacy survey sample with ΛCDM and the R h = ct universe, Astron. J. 149(3), 102 (2015)

    Article  ADS  Google Scholar 

  32. A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escudé, N. P. Ross, et al., Quasar-Lyman a forest cross-correlation from BOSS DR11: Baryon acoustic oscillations, J. Cosmol. Astropart. Phys. 05, 027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, et al., Baryon acoustic oscillations in the Lya forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015), arXiv: 1404.1801

    Article  ADS  Google Scholar 

  34. F. Melia and M. L. Corredoira, Alcock–Paczynski test with model-independent BAO Data, Mon. Not. Astron. Soc. (submitted), arXiv: 1503.05052, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Melia.

Additional information

John Woodruff Simpson Fellow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melia, F. Physical basis for the symmetries in the Friedmann–Robertson–Walker metric. Front. Phys. 11, 119801 (2016). https://doi.org/10.1007/s11467-016-0557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0557-6

Keywords

Navigation