Skip to main content
Log in

Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (1 S 03 P 0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU(N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large-N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993

    Book  Google Scholar 

  2. P. Coleman, Introduction to Many Body Physics, chapters 15 to 18, Cambridge University Press, 2015

    Book  MATH  Google Scholar 

  3. H. Tsunetsugu, M. Sigrist, and K. Ueda, The groundstate phase diagram of the one-dimensional Kondo lattice model, Rev. Mod. Phys. 69(3), 809 (1997)

    Article  ADS  Google Scholar 

  4. H. V. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)

    Article  ADS  Google Scholar 

  5. C. Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys. 81(4), 1551 (2009)

    Article  ADS  Google Scholar 

  6. J. A. Mydosh and P. M. Oppeneer, Hidden order, superconductivity, and magnetism: The unsolved case of URu2 Si2, Rev. Mod. Phys. 83(4), 1301 (2011)

    Article  ADS  Google Scholar 

  7. Y. F. Yang, Two-fluid model for heavy electron physics, Rep. Prog. Phys. 79(7), 074501 (2016)

    Article  ADS  Google Scholar 

  8. S. Doniach, The Kondo lattice and weak antiferromagnetism, Physica B + C 91, 231 (1977)

    Article  ADS  Google Scholar 

  9. M. Vekić, J. W. Cannon, D. J. Scalapino, R. T. Scalettar, and R. L. Sugar, Competition between antiferromagnetic order and spin-liquid behavior in the twodimensional periodic Anderson model at half filling, Phys. Rev. Lett. 74(12), 2367 (1995)

    Article  ADS  Google Scholar 

  10. F. F. Assaad, Quantum Monte Carlo simulations of the half-filled two-dimensional Kondo lattice model, Phys. Rev. Lett. 83(4), 796 (1999)

    Article  ADS  Google Scholar 

  11. M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T. Esslinger, Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions, Phys. Rev. Lett. 94(8), 080403 (2005)

    Article  Google Scholar 

  12. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice, Nature 455(7210), 204 (2008)

    Article  ADS  Google Scholar 

  13. R. A. Hart, P. M. Duarte, T. L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms, Nature 519(7542), 211 (2015)

    Article  ADS  Google Scholar 

  14. D. Greif, M. F. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt, F. Huber, G. Ji, and M. Greiner, Siteresolved imaging of a fermionic Mott insulator, Science 351(6276), 953 (2016)

    Article  ADS  Google Scholar 

  15. L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H. Zhang, and M. W. Zwierlein, Observation of 2D fermionic Mott insulators of K40 with single-site resolution, Phys. Rev. Lett. 116(23), 235301 (2016)

    Article  ADS  Google Scholar 

  16. M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and M. Greiner, Site-resolved measurement of the spin-correlation function in the Hubbard model, Science 353, 1253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. Boll, T. A. Hilker, G. Salomon, A. Omran, I. Bloch, and C. Gross, Spin and charge resolved quantum gas microscopy of antiferromagnetic order in Hubbard chains, Science 353, 1257 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, Nat. Phys. 6(4), 289 (2010)

    Article  Google Scholar 

  19. M. Foss-Feig, M. Hermele, and A. M. Rey, Probing the Kondo lattice model with alkaline-earth-metal atoms, Phys. Rev. A 81, 051603(R) (2010)

    Article  ADS  Google Scholar 

  20. M. Foss-Feig, M. Hermele, V. Gurarie, and A. M. Rey, Heavy fermions in an optical lattice, Phys. Rev. A 82(5), 053624 (2010)

    Article  ADS  Google Scholar 

  21. J. Silva-Valencia and A. M. C. Souza, Entanglement of alkaline-earth-metal fermionic atoms confined in optical lattices, Phys. Rev. A 85(3), 033612 (2012)

    Article  ADS  Google Scholar 

  22. J. Silva-Valencia and A. M. C. Souza, Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices, Eur. Phys. J. B 85, 5 (2012)

    Article  ADS  Google Scholar 

  23. B. N. Jiang, J. Qian, W. L. Wang, J. Du, and Y. Z. Wang, Interacting heavy fermions in a disordered optical lattice, Eur. Phys. J. D 68(12), 361 (2014)

    Article  ADS  Google Scholar 

  24. L. Isaev and A. M. Rey, Heavy-fermion valence-bond liquids in ultracold atoms: Cooperation of the Kondo effect and geometric frustration, Phys. Rev. Lett. 115(16), 165302 (2015)

    Article  ADS  Google Scholar 

  25. L. Isaev, J. Schachenmayer, and A. M. Rey, Spin-Orbit-coupled correlated metal phase in Kondo lattices: An implementation with alkaline-earth atoms, Phys. Rev. Lett. 117(13), 135302 (2016)

    Article  ADS  Google Scholar 

  26. R. Zhang, D. P. Zhang, Y. T. Cheng, W. Chen, P. Zhang, and H. Zhai, Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances, Phys. Rev. A 93(4), 043601 (2016)

    Article  ADS  Google Scholar 

  27. R. Zhang, Y. T. Cheng, H. Zhai, and P. Zhang, Orbital Feshbach resonance in alkali-earth atoms, Phys. Rev. Lett. 115(13), 135301 (2015)

    Article  ADS  Google Scholar 

  28. G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance, Phys. Rev. Lett. 115(26), 265301 (2015)

    Article  ADS  Google Scholar 

  29. M. Höfer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes, M. M. Parish, J. Levinsen, I. Bloch, and S. Fölling, Observation of an orbital interaction-induced Feshbach resonance in Yb173, Phys. Rev. Lett. 115(26), 265302 (2015)

    Article  ADS  Google Scholar 

  30. M. Dzero, J. Xia, V. Galitski, and P. Coleman, Topological Kondo insulators, Annu. Rev. Condens. Matter Phys. 7(1), 249 (2016)

    Article  ADS  Google Scholar 

  31. H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302(5653), 2104 (2003)

    Article  ADS  Google Scholar 

  32. J. P. Rueff, J. P. Itie, M. Taguchi, C. F. Hague, J. M. Mariot, R. Delaunay, J. P. Kappler, and N. Jaouen, Probing the γα transition in bulk Ce under pressure: A Direct investigation by resonant inelastic X-ray scattering, Phys. Rev. Lett. 96(23), 237403 (2006)

    Article  ADS  Google Scholar 

  33. C. Pépin, Kondo breakdown as a selective Mott transition in the Anderson lattice, Phys. Rev. Lett. 98(20), 206401 (2007)

    Article  ADS  Google Scholar 

  34. Y. Zhong, K. Liu, Y. Q. Wang, and H. G. Luo, Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition, Phys. Rev. B 86(11), 115113 (2012)

    Article  ADS  Google Scholar 

  35. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo calculations of coupled boson-fermion systems (I), Phys. Rev. D 24(8), 2278 (1981)

    Article  ADS  Google Scholar 

  36. J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study, Phys. Rev. B 31(7), 4403 (1985)

    Article  ADS  Google Scholar 

  37. R. R. dos Santo, Braz. J. Phys. 33, 1 (2003)

    Google Scholar 

  38. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68(1), 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, and J. Ye, Nuclear spin effects in optical lattice clocks, Phys. Rev. A 76(2), 022510 (2007)

    Article  ADS  Google Scholar 

  40. G. K. Campbell, M. M. Boyd, J. W. Thomsen, M. J. Martin, S. Blatt, M. D. Swallows, T. L. Nicholson, T. Fortier, C. W. Oates, S. A. Diddams, N. D. Lemke, P. Naidon, P. Julienne, J. Ye, and A. D. Ludlow, Probing interactions between ultracold fermions, Science 324(5925), 360 (2009)

    Article  ADS  Google Scholar 

  41. M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104(10), 106408 (2010)

    Article  ADS  Google Scholar 

  42. T. Esslinger, Fermi–Hubbard physics with atoms in an optical lattice, Annu. Rev. Condens. Matter Phys. 1(1), 129 (2010)

    Article  ADS  Google Scholar 

  43. I. Bloch, J. Dalibard, and S. Nascimbene, Quantum simulations with ultracold quantum gases, Nat. Phys. 8(4), 267 (2012)

    Article  Google Scholar 

  44. Y. Zhong, K. Liu, Y. F. Wang, Y. Q. Wang, and H. G. Luo, Half-filled Kondo lattice on the honeycomb lattice, Eur. Phys. J. B 86(5), 195 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. L. De Leo, C. Kollath, A. Georges, M. Ferrero, and O. Parcollet, Trapping and cooling fermionic atoms into Mott and Néel states, Phys. Rev. Lett. 101(21), 210403 (2008)

    Article  Google Scholar 

  46. V. W. Scarola, L. Pollet, J. Oitmaa, and M. Troyer, Discerning incompressible and compressible phases of cold atoms in optical lattices, Phys. Rev. Lett. 102(13), 135302 (2009)

    Article  ADS  Google Scholar 

  47. S. Chiesa, C. N. Varney, M. Rigol, and R. T. Scalettar, Magnetism and pairing of two-dimensional trapped fermions, Phys. Rev. Lett. 106(3), 035301 (2011)

    Article  ADS  Google Scholar 

  48. T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)

    Article  ADS  Google Scholar 

  49. M. Vojta, Orbital-selective Mott transitions: Heavy fermions and beyond, J. Low Temp. Phys. 161(1–2), 203 (2010)

    Article  ADS  Google Scholar 

  50. T. Paiva, R. Scalettar, M. Randeria, and N. Trivedi, Fermions in 2D optical lattices: Temperature and entropy scales for observing antiferromagnetism and superfluidity, Phys. Rev. Lett. 104(6), 066406 (2010)

    Article  ADS  Google Scholar 

  51. M. Jarrell, H. Akhlaghpour, and Th. Pruschke, Periodic Anderson model in infinite dimensions, Phys. Rev. Lett. 70(11), 1670 (1993)

    Article  ADS  Google Scholar 

  52. M. J. Rozenberg, G. Kotliar, and H. Kajueter, Transfer of spectral weight in spectroscopies of correlated electron systems, Phys. Rev. B 54(12), 8452 (1996)

    Article  ADS  Google Scholar 

  53. C. J. Wu, J. P. Hu, and S. C. Zhang, Exact SO(5) symmetry in the spin-3/2 fermionic system, Phys. Rev. Lett. 91(18), 186402 (2003)

    Article  ADS  Google Scholar 

  54. C. J. Wu, Exotic many-body physics with large-spin Fermi gases, Physics 3, 92 (2010)

    Article  Google Scholar 

  55. D. Wang, Y. Li, Z. Cai, Z. C. Zhou, Y. Wang, and C. J. Wu, Competing orders in the 2D half-filled SU(2N) Hubbard model through the pinning-field quantum Monte Carlo simulations, Phys. Rev. Lett. 112(15), 156403 (2014)

    Article  ADS  Google Scholar 

  56. Z. C. Zhou, D. Wang, Z. Y. Meng, Y. Wang, and C. J. Wu, Mott insulating states and quantum phase transitions of correlated SU(2N) Dirac fermions, Phys. Rev. B 93(24), 245157 (2016)

    Article  ADS  Google Scholar 

  57. S. M. Ramos, M. B. Fontes, E. N. Hering, M. A. Continentino, E. Baggio-Saitovich, F. D. Neto, E. M. Bittar, P. G. Pagliuso, E. D. Bauer, J. L. Sarrao, and J. D. Thompson, Superconducting quantum critical point in CeCoIn5-x Snx, Phys. Rev. Lett. 105(12), 126401 (2010)

    Article  ADS  Google Scholar 

  58. D. J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84(4), 1383 (2012)

    Article  ADS  Google Scholar 

  59. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: the plain vanilla version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)

    ADS  Google Scholar 

  60. P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)

    Article  ADS  Google Scholar 

  61. Y. Zhong, L. Zhang, C. Shao, and H. G. Luo, Superfluid response in heavy fermion superconductors, Front. Phys. 12(5), 127101 (2017)

    Article  Google Scholar 

  62. M. Nakagawa and N. Kawakami, Laser-induced Kondo effect in ultracold alkaline-earth fermions, Phys. Rev. Lett. 115(16), 165303 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Congjun Wu for helpful discussion on SU(N) physics, and Ren Zhang for discussions about orbital Feshbach Resonance. This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 11325417, 11674139, and 11504061, the China Postdoctoral Science Foundation, and the Foundation of LCP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhong.

Additional information

arXiv: 1610.04372.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Liu, Y. & Luo, HG. Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential. Front. Phys. 12, 127502 (2017). https://doi.org/10.1007/s11467-017-0690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0690-x

Keywords

PACS numbers

Navigation