Skip to main content
Log in

Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.

A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford: Oxford University Press, 2003

    MATH  Google Scholar 

  2. C. J. Pethick and H. Smith, Bose–Einstein Condensate in Dilute Gas, Cambridge: Cambridge University Press, 2008

    Book  Google Scholar 

  3. A. Griffin, T. Nikuni, and E. Zaremba, Bose-condensed Gases at Finite Temperature, Cambridge: Cambridge University Press, 2009

    Book  MATH  Google Scholar 

  4. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent Nonlinear Phenomena in Bose–Einstein Condensates, Berlin: Springer, 2008

    Book  MATH  Google Scholar 

  5. H. T. C. Stoof, K. B. Gubbels, and D. B. M. Dickerscheid, Ultracold Quantum Fields, Dordrecht: Springer, 2009

    MATH  Google Scholar 

  6. M. Weidemüller and C. Zimmermann (Eds.), Cold Atoms and Molecules, Weinheim: Wiley-VCH, 2009

    Google Scholar 

  7. R. Krems, W. C. Stwalley, and B. Friedrich, Cold Molecules: Theory, Experiment, Applications, Boca Raton: CRC Press, 2009

    Google Scholar 

  8. D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Collective excitations of a Bose–Einstein condensate in a dilute gas, Phys. Rev. Lett. 77(3), 420 (1996)

    Article  ADS  Google Scholar 

  9. M. O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, Bose–Einstein condensation in a tightly confining dc magnetic trap, Phys. Rev. Lett. 77(3), 416 (1996)

    Article  ADS  Google Scholar 

  10. M. O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, Collective excitations of a Bose–Einstein condensate in a magnetic trap, Phys. Rev. Lett. 77(6), 988 (1996)

    Article  ADS  Google Scholar 

  11. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett. 83(25), 5198 (1999)

    Article  ADS  Google Scholar 

  12. B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, Watching dark solitons decay into vortex rings in a Bose–Einstein condensate, Phys. Rev. Lett. 86(14), 2926 (2001)

    Article  ADS  Google Scholar 

  13. A. Muryshev, G. V. Shlyapnikov, W. Ertmer, K. Sengstock, and M. Lewenstein, Dynamics of dark solitons in elongated Bose–Einstein condensates, Phys. Rev. Lett. 89(11), 110401 (2002)

    Article  ADS  Google Scholar 

  14. J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips, Generating solitons by phase engineering of a Bose–Einstein condensate, Science 287(5450), 97 (2000)

    Article  ADS  Google Scholar 

  15. Z. Dutton, M. Budde, C. Slowe, and L. V. Hau, Observation of quantum shock waves created with ultracompressed slow light pulses in a Bose–Einstein condensate, Science 293(5530), 663 (2001)

    Article  ADS  Google Scholar 

  16. D. J. Frantzeskakis, Dark solitons in atomic Bose–Einstein condensates: From theory to experiments, J. Phys. A Math. Theor. 43(21), 213001 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. U. Al Khawaja, H. T. C. Stoof, R. G. Hulet, K. E. Strecker, and G. B. Partridge, Bright soliton trains of trapped Bose–Einstein condensates, Phys. Rev. Lett. 89(20), 200404 (2002)

    Article  Google Scholar 

  18. S. L. Cornish, S. T. Thompson, and C. E. Wieman, Formation of bright matter-wave solitons during the collapse of attractive Bose–Einstein condensates, Phys. Rev. Lett. 96(17), 170401 (2006)

    Article  ADS  Google Scholar 

  19. L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Formation of a matter-wave bright soliton, Science 296(5571), 1290 (2002)

    Article  ADS  Google Scholar 

  20. K. E. Stecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates, Nature 89, 110401 (2002)

    Google Scholar 

  21. B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K. P. Marzlin, and M. K. Oberthaler, Bright Bose–Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett. 92(23), 230401 (2004)

    Article  ADS  Google Scholar 

  22. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose–Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)

    Article  ADS  Google Scholar 

  23. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett. 84, 86809 (1999)

    Google Scholar 

  24. S. Inouye, S. Gupta, T. Rosenband, A. P. Chikkatur, A. Görlitz, T. L. Gustavson, A. E. Leanhardt, D. E. Pritchard, and W. Ketterle, Observation of vortex phase singularities in Bose–Einstein condensates, Phys. Rev. Lett. 87(8), 080402 (2001)

    Article  ADS  Google Scholar 

  25. V. Schweikhard, I. Coddington, P. Engels, S. Tung, and E. A. Cornell, Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates, Phys. Rev. Lett. 93(21), 210403 (2004)

    Article  ADS  Google Scholar 

  26. J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science 292(5516), 476 (2001)

    Article  ADS  Google Scholar 

  27. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, San Diego: Academic, 2003

    Google Scholar 

  28. L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. S. Kivshar and D. E. Pelinovsky, Self-focusing and transverse instabilities of solitary waves, Phys. Rep. 331(4), 117 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spatiotemporal optical solitons, J. Optics B 7(5), R53 (2005)

    Article  Google Scholar 

  31. B. A. Malomed, L. Torner, F. Wise, and D. Mihalache, On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics, J. Optics B: At. Mol. Opt. Phys. 49, 170502 (2016)

    ADS  Google Scholar 

  32. B. A. Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)

    Article  Google Scholar 

  33. V. E. Zakharov and E. A. Kuznetsov, Solitons and collapses: Two evolution scenarios of nonlinear wave systems, Phys. Uspekhi 55(6), 535 (2012)

    Article  ADS  Google Scholar 

  34. D. Mihalache, Linear and nonlinear light bullets: Recent theoretical and experimental studies, Rom. J. Phys. 57, 352 (2012)

    Google Scholar 

  35. D. Mihalache, Multidimensional localized structures in optics and Bose–Einstein condensates: A selection of recent studies, Rom. J. Phys. 59, 295 (2014)

    Google Scholar 

  36. C. Sulem and P. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Berlin: Springer, 2000

    MATH  Google Scholar 

  37. G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Dordrecht: Springer, 2015

    Book  MATH  Google Scholar 

  38. R. Y. Chiao, E. Garmire, and C. H. Townes, Selftrapping of optical beams, Phys. Rev. Lett. 13(15), 479 (1964)

    Article  ADS  Google Scholar 

  39. D. Mihalache, D. Mazilu, B. A. Malomed, and F. Lederer, Vortex stability in nearly-two-dimensional Bose–Einstein condensates with attraction, Phys. Rev. A 73(4), 043615 (2006)

    Article  ADS  Google Scholar 

  40. B. A. Malomed, F. Lederer, D. Mazilu, and D. Mihalache, On stability of vortices in three-dimensional self-attractive Bose–Einstein condensates, Phys. Lett. A 361(4–5), 336 (2007)

    Article  ADS  MATH  Google Scholar 

  41. D. E. Pelinovsky, Localization in Periodic Potential: From Schrödinger Operators to the Gross–Pitaevskii Equation, Cambridge: Cambridge University Press, 2011

    Book  MATH  Google Scholar 

  42. V. A. Brazhnyi and V. V. Konotop, Theory of nonlinear matter waves in optical lattices, Mod. Phys. Lett. B 18(14), 627 (2004)

    Article  ADS  MATH  Google Scholar 

  43. O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)

    Article  ADS  Google Scholar 

  44. Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247 (2011)

    Article  ADS  Google Scholar 

  45. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility control in optical lattices, Progress in Optics 52, 63 (2009) (edited by E. Wolf, Amsterdam: North Holland)

    Article  Google Scholar 

  46. B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons in periodic potentials, Europhys. Lett. 63(5), 642 (2003)

    Article  ADS  MATH  Google Scholar 

  47. B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons in a low-dimensional periodic potential, Phys. Rev. A 70(5), 053613 (2004)

    Article  ADS  MATH  Google Scholar 

  48. J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094 (2003)

    Article  ADS  Google Scholar 

  49. H. Sakaguchi and B. A. Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. Phys. B 37(11), 2225 (2004)

    Article  ADS  Google Scholar 

  50. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton: Princeton University Press, 2008

    MATH  Google Scholar 

  51. I. L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y. S. Kivshar, Light propagation and localization in modulated photonic lattices and waveguides, Phys. Rep. 518(1–2), 1 (2012)

    Article  ADS  Google Scholar 

  52. Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial solitons: Historical overview and recent advances, Rep. Prog. Phys. 75(8), 086401 (2012)

    Article  ADS  Google Scholar 

  53. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, Observation of discrete vortex solitons in optically induced photonic lattices, Phys. Rev. Lett. 92(12), 123903 (2004)

    Article  ADS  Google Scholar 

  54. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, Observation of vortex-ring discrete solitons in 2D photonic lattices, Phys. Rev. Lett. 92(12), 123904 (2004)

    Article  ADS  Google Scholar 

  55. E. A. Cerda-Méndez, D. Sarkar, D. N. Krizhanovskii, S. S. Gavrilov, K. Biermann, M. S. Skolnick, and P. V. Santos, Exciton–polariton gap solitons in twodimensional lattices, Phys. Rev. Lett. 111(14), 146401 (2013)

    Article  ADS  Google Scholar 

  56. H. Sakaguchi and B. A. Malomed, Matter-wave solitons in nonlinear optical lattices, Phys. Rev. E 72(4), 046610 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  57. Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner, Vector solitons in nonlinear lattices, Opt. Lett. 34(23), 3625 (2009)

    Article  ADS  Google Scholar 

  58. H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)

    Article  ADS  Google Scholar 

  59. J. Zeng and B. A. Malomed, Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials, Phys. Scr. T149, 014035 (2012)

    Article  ADS  Google Scholar 

  60. H. Sakaguchi and B. A. Malomed, Two-dimensional solitons in the Gross–Pitaevskii equation with spatially modulated nonlinearity, Phys. Rev. E 73(2), 026601 (2006)

    Article  ADS  Google Scholar 

  61. Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner, Two-dimensional solitons in nonlinear lattices, Opt. Lett. 34(6), 770 (2009)

    Article  ADS  Google Scholar 

  62. Y. Sivan, G. Fibich, B. Ilan, and M. I. Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons, Phys. Rev. E 78(4), 046602 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  63. N. V. Hung, P. Ziń, M. Trippenbach, and B. A. Malomed, Two dimensional solitons in media with stripeshaped nonlinearity modulation, Phys. Rev. E 82(4), 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  64. T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials, J. Mod. Opt. 58(21), 1977 (2011)

    Article  ADS  Google Scholar 

  65. Y. V. Kartashov, V. A. Vysloukh, A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, A. Tunnermann, T. Pertsch, and L. Torner, Surface solitons at interfaces of arrays with spatially modulated nonlinearity, Opt. Lett. 33(10), 1120 (2008)

    Article  ADS  Google Scholar 

  66. V. Skarka, V. I. Berezhiani, and R. Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media, Phys. Rev. E 56(1), 1080 (1997)

    Article  ADS  Google Scholar 

  67. M. Quiroga-Teixeiro and H. Michinel, Stable azimuthal stationary state in quintic nonlinear optical media, J. Opt. Soc. Am. B 14(8), 2004 (1997)

    Article  ADS  Google Scholar 

  68. R. Carretero-González, J. D. Talley, C. Chong, and B. A. Malomed, Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation, Physica D 216(1), 77 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. C. Chong, R. Carretero-González, B. A. Malomed, and P. G. Kevrekidis, Multistable solitons in higherdimensional cubic-quintic nonlinear Schrödinger lattices, Physica D 238(2), 126 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. N. Dror and B. A. Malomed, Symmetric and asymmetric solitons and vortices in linearly coupled twodimensional waveguides with the cubic-quintic nonlinearity, Physica D 240(6), 526 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, Stability of dissipative optical solitons in the three dimensional cubic-quintic Ginzburg–Landau equation, Phys. Rev. A 75(3), 033811 (2007)

    Article  ADS  Google Scholar 

  72. N. Viet Hung, M. Trippenbach, E. Infeld, and B. A. Malomed, Spatial control of the competition between self-focusing and self-defocusing nonlinearities in one-and two-dimensional systems, Phys. Rev. A 90(2), 023841 (2014)

    Article  ADS  Google Scholar 

  73. S. Loomba, R. Pal, and C. N. Kumar, Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity, Phys. Rev. A 92(3), 033811 (2015)

    Article  ADS  Google Scholar 

  74. J. Zeng and B. A. Malomed, Stabilization of onedimensional solitons against the critical collapse by quintic nonlinear lattices, Phys. Rev. A 85(2), 023824 (2012)

    Article  ADS  Google Scholar 

  75. M. Vakhitov, and A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron. 16(7), 783 (1973)

    Article  ADS  Google Scholar 

  76. E. L. Falcão-Filho, C. B. de Araújo, G. Boudebs, H. Leblond, and V. Skarka, Robust two-dimensional spatial solitons in liquid carbon disulfide, Phys. Rev. Lett. 110(1), 013901 (2013)

    Article  ADS  Google Scholar 

  77. X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations, Comput. Phys. Commun. 184(12), 2621 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. A. S. Reyna, K. C. Jorge, and C. B. de Araújo, Two-dimensional solitons in a quintic-septimal medium, Phys. Rev. A 90(6), 063835 (2014)

    Article  ADS  Google Scholar 

  79. A. S. Reyna, B. A. Malomed, and C. B. de Araújo, Stability conditions for one-dimensional optical solitons in cubicquintic-septimal media, Phys. Rev. A 92(3), 033810 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61690224, 61690222, and 11204151), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016357), the CAS/SAFEA International Partnership Program for Creative Research Teams, and partially the Initiative Scientific Research Program of the State Key Laboratory of Transient Optics and Photonics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zeng.

Additional information

arXiv: 1706.02500.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Zeng, J. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices. Front. Phys. 13, 130501 (2018). https://doi.org/10.1007/s11467-017-0697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0697-3

Keywords

Navigation