Skip to main content
Log in

Phase-Transfer Identification of Core-Shell Structures in Bimetallic Nanoparticles

  • Original Paper
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

On the basis of a combination of previously published experimental procedures, ultraviolet–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray measurements, a systematic investigation was carried out on the phase-transfer characteristics of different bimetallic nanoparticles (Ag–Au, Ag–Pt, Ag–Ru, Au–Pt, Au–Ru, and Pt–Ru) formed by the seed-mediated growth reactions. The different phase-transfer characteristics of the monometallic nanoparticles of Au, Ag, Pt, and Ru were used to form the basis of differentiation between various possible structures existing in the bimetallic systems (core-shell particles or a physical mixture of nanoparticles). The experimental results indicate clearly the formation of core-shell nanoparticles of Ag–Au, Ag–Pt, Ru–Ag, Pt–Au, Au–Ru, and Pt–Ru when the nanoparticles of the first metal were used as the seeds in the seed-mediated growth reactions. However, when the order of the synthesis was reversed using the nanoparticles of the second metal as the seeds, only a physical mixture of the two metal nanoparticles was obtained instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22(11):1179–1201

    Article  CAS  Google Scholar 

  2. Davies R, Schurr GA, Meenan P, Nelson RD, Bergna HE, Brevett CAS, Goldbaum RH (1998) Engineered particle surfaces. Adv Mater 10(15):1264–1270

    Article  CAS  Google Scholar 

  3. Matijevic E (1996) In Pelizetti E (ed) Fine Particle Science and Technology. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  4. Liz-Marzan LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18):4329–4335

    Article  CAS  Google Scholar 

  5. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22

    Article  CAS  Google Scholar 

  6. Napper DH (1983) Polymeric Stabilization of Colloidal Dispersions. Academic, New York

    Google Scholar 

  7. Antelmi DA, Spalla O (1999) Adsorption of nanolatex particles to mineral surfaces of variable surface charge. Langmuir 15(22):7478–7489

    Article  CAS  Google Scholar 

  8. Sato T, Ruch R (1980) Stabilization of Colloidal Dispersions by Polymer Adsorption; Surfactant Science Series, No 9. Marcel Dekker, New York

    Google Scholar 

  9. Bartsch E, Frenz V, Baschnagel J, Schaertl W, Silescu H (1997) The glass transition dynamics of polymer micronetwork colloids: a mode coupling analysis. J Chem Phys 106(9):3743–3756

    Article  CAS  Google Scholar 

  10. Jana NR (2003) Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst 128(7):954–956

    Article  CAS  Google Scholar 

  11. Jin Y, Dong S (2003) One-pot synthesis and characterization of novel silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes. J Phys Chem B 107(47):12902–12905

    Article  CAS  Google Scholar 

  12. Flynn NT, Gewirth AA (2002) Attenuation of surface-enhanced Raman spectroscopy response in gold–platinum core-shell nanoparticles. J Raman Spectrosc 33(4):243–251

    Article  CAS  Google Scholar 

  13. Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, Zhao B (2002) Seed-mediated growth of large, monodisperse core-shell gold–silver nanoparticles with Ag-like optical properties. Chem Commun 2:144–145

    Article  Google Scholar 

  14. Chen DH, Chen CJ (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12(5):1557–1562

    Article  CAS  Google Scholar 

  15. Srnová-Šloufová I, Lednický F, Gemperle A, Gemperlová J (2000) Core-shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16(25):9928–9935

    Article  Google Scholar 

  16. Rivas L, Sanchez-Cortes S, García-Ramos JV, Morcillo G (2000) Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16(25):9722–9728

    Article  CAS  Google Scholar 

  17. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104(49):11708–11718

    Article  CAS  Google Scholar 

  18. Mandal M, Jana NR, Kundu S, Ghosh K, Panigrahi M, Pal T (2004) Synthesis of Aucore–Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method. J Nanoparticle Res 6(1):53–61

    Article  CAS  Google Scholar 

  19. Mandal M, Kundu S, Ghosh K, Jana NR, Panigrahi M, Pal T (2004) Sniffing a single molecule through SERS using Aucore–Agshell bimetallic nanoparticles. Curr Sci 86(4):556–559

    CAS  Google Scholar 

  20. Kan C, Cai W, Li C, Zhang L, Hofmeister H (2003) Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol. J Phys D Appl Phys 36(13):1609–1614

    Article  CAS  Google Scholar 

  21. Shiraishi Y, Ikenaga D, Toshima N (2003) Preparation and catalysis of inverted core/shell structured Pd/Au bimetallic nanoparticles. Aust J Chem 56(10):1025–1029

    Article  CAS  Google Scholar 

  22. Tsai SH, Liu YH, Wu PL, Yeh CS (2003) Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J Mater Chem 13(5):978–980

    Article  CAS  Google Scholar 

  23. Henglein A (2000) Preparation and optical absorption spectra of AucorePtshell and PtcoreAushell colloidal nanoparticles in aqueous solution. J Phys Chem B 104(10):2201–2203

    Article  CAS  Google Scholar 

  24. He J, Ichinose I, Kunitake T, Nakao A, Shiraishi Y, Toshima N (2003) Facile fabrication of Ag–Pd bimetallic nanoparticles in ultrathin TiO2-Gel films: nanoparticle morphology and catalytic activity. J Am Chem Soc 125(36): 11034–11040

    Article  CAS  Google Scholar 

  25. Damle C, Kumar A, Sastry M (2002) Synthesis of Ag/Pd nanoparticles and their low-temperature alloying within thermally evaporated fatty acid films. J Phys Chem B 106(2):297–302

    Article  CAS  Google Scholar 

  26. Doudna CM, Bertino MF, Blum FD, Tokuhiro AT, Lahiri-Dey D, Chattopadhyay S, Terry J (2003) Radiolytic synthesis of bimetallic Ag–Pt nanoparticles with a high aspect ratio. J Phys Chem B 107(13):2966–2970

    Article  CAS  Google Scholar 

  27. Brus L (1986) Zero-dimensional “excitons” in semiconductor clusters. IEEE J Quantum Electron QE-22(9):1909–1914

    Article  CAS  Google Scholar 

  28. Toshima N (1996) In Pelizzetti E (ed) Fine Particles Science and Technology—From Micro to New Particles. Kluwer, Dordrecht

    Google Scholar 

  29. Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103(18):3529–3533

    Article  CAS  Google Scholar 

  30. Lee JY, Yang J, Deivaraj TC, Too HP (2003) A novel synthesis route for ethylenediamine-protected ruthenium nanoparticles. J Colloid Interface Sci 268(1):77–80

    Article  CAS  Google Scholar 

  31. Yang J, Lee JY, Deivaraj TC, Too HP (2004) A highly efficient phase transfer method for preparing alkylamine-stabilized Ru, Pt, Au nanoparticles. J Colloid Interface Sci 277(1):95–99

    Article  CAS  Google Scholar 

  32. Siepen K, Bonnemann H, Brijoux W, Rothe J, Hormes J (2000) EXAFS/XANES, chemisorption and IR investigations of colloidal Pt/Rh bimetallic catalysts. Appl Organomet Chem 14(10):549–556

    Article  CAS  Google Scholar 

  33. D’Souza L, Sampath S (2000) Preparation and characterization of silane-stabilized, highly uniform, nanobimetallic Pt–Pd particles in solid and liquid matrixes. Langmuir 16(22):8510–8517

    Article  CAS  Google Scholar 

  34. Grabar KC, Freeman RG, Hommer MB, Natan M (1995) Preparation and characterization of Au colloid monolayers. J Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  35. Gearheart LA, Ploehn HJ, Murphy CJ (2001) Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA. J Phys Chem B 105(50):12609–12615

    Article  CAS  Google Scholar 

  36. Cheng W, Wang E (2004) Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic interaction. J Phys Chem B 108(1):24–26

    Article  CAS  Google Scholar 

  37. Zhang X, Chan K-Y (2003) Water-in-oil microemulsion synthesis of platinum–ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem Mater 15(2):451–459

    Article  CAS  Google Scholar 

  38. Arico AS, Creti P, Kim H, Mantegna R, Giordano N, Antonucci V (1996) Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt–Ru/C anode catalyst. J Electrochem Soc 143(12):3950–3959

    Article  CAS  Google Scholar 

  39. Liu Z, Lee JY, Han M, Chen WX, Gan LM (2002) Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions. J Mater Chem 12(8):2453–2458

    Article  CAS  Google Scholar 

  40. Wagner CD, Naumkin AV, Kraut-Yass A, Allison JW, Powell CJ, Rumble Jr JR NIST Standard Reference Database 20, Version 32 (www.nist.gov/srd/nist20.htm)

  41. Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997) Thiol-derivatized nanocrystalline arrays of gold, silver, platinum. J Phys Chem B 101(48):9876–9880

    Article  CAS  Google Scholar 

  42. Sun Y, Mayers B, Xia Y (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2(5):481–485

    Article  CAS  Google Scholar 

  43. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  Google Scholar 

  44. Shibata T, Tostmann H, Bunker B, Henglein A, Meisel D, Cheong S, Boyanov M (2001) XAFS studies of gold and silver–gold nanoparticles in aqueous solutions. J Synchroton Radiat 8(Pt 2):545–547

    Article  CAS  Google Scholar 

  45. Zhu J, Wang Y, Huang L, Lu Y (2004) Resonance light scattering characters of core-shell structure of Au–Ag nanoparticles. Phys Lett A 323(5–6):455–459

    Article  CAS  Google Scholar 

  46. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the general financial support from the Singapore-MIT Alliance. J.Y. would like to acknowledge the National University of Singapore for his research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Yang Lee.

Additional information

Parts of the data on Au–Ru and Ag–Pt systems have been published in Analytica Chimica Acta (2005, 537, 279–284) and Journal of Physical Chemistry B (2005, 109, 5468–5472), respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yang Lee, J. & Too, HP. Phase-Transfer Identification of Core-Shell Structures in Bimetallic Nanoparticles. Plasmonics 1, 67–78 (2006). https://doi.org/10.1007/s11468-005-9003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-005-9003-2

Keywords

Navigation