Skip to main content
Log in

Sensitivity of Optical Fiber Sensor Based on Surface Plasmon Resonance: Modeling and Experiments

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, surface plasmon resonance curves of an optical fiber-based sensor were investigated. From an experimental and theoretical perspective, the response curves were analyzed and discussed. Precisely, such curves were calculated by modeling the analyte/metallic layer interface using a multilayer system, including the effects of roughness. Then, the experimental response curves observed in solutions with different refractive indices were compared to the simulated curves. Good agreement was obtained with respect to the resonance peak location and the shape of the curves. Consequently, these results enabled us to predict the ideal functioning conditions of the sensor, i.e., the working parameters corresponding to the best sensitivities of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Reather H (1988) Surface plasmons on smooth and rough surfaces and on gratings, vol 111. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Homola J, Yee SS, Myszka D (2002) Surface plasmon resonance biosensors. In: Ligler FS, Rowe Taitt CA (eds) Optical biosensors: present and future. Elsevier, Amsterdam, pp 207–251

    Google Scholar 

  3. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  Google Scholar 

  4. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch A 23:2135–2136

    CAS  Google Scholar 

  5. Phillips KS, Cheng Q (2007) Recent advances in surface plasmon resonance based techniques for bioanalysis. Anal Bioanal Chem 387:1831–1840

    Article  Google Scholar 

  6. Jorgenson R, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuators B 12:213–220

    Article  CAS  Google Scholar 

  7. Slavik R, Homola J, Ctyroky J (1998) Miniaturization of fiber optic surface plasmon resonance sensor. Sens Actuators B 51:311–315

    Article  Google Scholar 

  8. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol 32:3–13

    Article  Google Scholar 

  9. Homola J, Yee SS, Gauglitzand G (1999) Surface plasmon resonance sensors: review. Anal Sens Actuators B 54:3–15

    Article  Google Scholar 

  10. Ince R, Narayanaswamy R (2006) Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal Chim Acta 569:1–20

    Article  Google Scholar 

  11. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface Plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129

    Article  Google Scholar 

  12. Leung A, Shankar PM, Mutharasanand R (2007) A review of Fiber-optic biosensors. Sens Actuators B 125:688–703

    Article  Google Scholar 

  13. Balaa K, Kanso M, Cuenot S, Minea T, Louarn G (2007) Experimental realization and numerical simulation of wavelength-modulated fiber optic sensor based on surface plasmon resonance–SPR. Sens Actuators B Chem 126:198–203

    Article  Google Scholar 

  14. Chaigneau M, Balaa K, Minea T, Louarn G (2007) Plasmon resonance micro-sensor for droplets analysis. Opt Lett 32:2435–2437

    Article  CAS  Google Scholar 

  15. Kanso M, Cuenot S, Louarn G (2007) Roughness effect on the SPR measurements for an optical fiber configuration: experimental and numerical approaches. J Opt A Pure Appl Opt 9:586–592

    Article  Google Scholar 

  16. Lin WB, Jaffrezic-Renault N, Gagnaire A, Gagnaire H (2000) The effects of polarisation of the incident light- modeling and analysis of a SPR multimode optical fiber sensor. Sens Actuators 84:198–204

    Article  Google Scholar 

  17. Xu Y, Jones NB, Fothergille JC, Hanning CD (2000) Analytical estimates of the characteristics of surface plasmon resonance fiber-optic sensors. Mod Opt 47:1099–1110

    Article  Google Scholar 

  18. Watanabe M, Kajikawa K (2003) an optical fiber biosensor based on anomalous reflection of gold. Sens Actuators B 89:126–130

    Article  Google Scholar 

  19. Sharma AK, Gupta BD (2005) On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt Commun 245:159–169

    Article  Google Scholar 

  20. Sharma AK, Gupta BD (2007) Comparison of performance parameters of conventional and nano-plasmonic fiber optic sensors. Plasmonics 2:51–54

    Article  CAS  Google Scholar 

  21. Chiu M-H, Shih C-H, Chi M-H (2007) Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sens Actuators B 123:1120–1124

    Article  Google Scholar 

  22. Wolfe WL (1978) Properties of optical materials. Section 7. In: Driscoll WG (ed) Handbook of optics sponsored by the Optical Society of America. McGraw-Hill, New York

    Google Scholar 

  23. Tropf WJ, Thomas ME, Haris TJ (1995) Properties of crystals and glasses. Chapter 33. In: Bass M (ed) Handbook of optics. vol. 2. 2nd edn. McGraw-Hill, New York

    Google Scholar 

  24. Etchegoin PG, Ru ECL, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705

    Article  CAS  Google Scholar 

  25. Leng J, Opsal J, Chu H, Senko M, Aspnes DE (1998) Analytic representations of the dielectric functions of materials for device and structural modeling. Thin Solid Film 313:132–136

    Article  Google Scholar 

  26. Kovacs GJ, Scott GD (1977) Optical excitation of surface plasma waves in layered media. Phys Rev B 16:1297

    Article  CAS  Google Scholar 

  27. Aspnes DE (1982) Optical properties of thin films. Thin Solid Film 89:249–262

    Article  CAS  Google Scholar 

  28. Yeh P (1988) Optical waves in layered media. Wiley, New York, pp 102–117

    Google Scholar 

  29. Xu Y, Cottenden A, Jones NB (2006) A theoretical evaluation of fiber- optic evanescent wave absorption in spectroscopy and sensors. Opt Lasers Eng 44:93–101

    Article  Google Scholar 

  30. Villatoro J, Monzón-Hernández D, Majía E (2003) Fabrication and modelling of uniform-waist single mode tapered optical fiber sensors. Appl Opt 42:2278–2283

    Article  Google Scholar 

  31. Yin X, Hesselink L (2006) Goos-Hänchen shift surface plasmon resonance sensor. Appl Phys Lett 89:261108

    Article  Google Scholar 

  32. Baibarac M, Mihut L, Louarn G, Mevellec JY, Wery J, Lefrant S, Baltog I (1999) Interfacial chemical effect evidenced on SERS spectra of polyaniline thin films deposited on rough metallic supports. J Raman Spectrosc 30:1105–1113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Louarn.

Appendix

Appendix

Transfer matrix formalism for a multilayer system

In this appendix, we briefly explain the concept employed to realize the numerical modeling. The reflectance R of the light on our multilayer system was computed using the transfer matrix formalism. This formalism, which is based on the calculation of light propagation through a multilayer medium consisting of (N − 1) isotropic and homogeneous layers, has already been extensively described [28]. A computer simulation was performed on three- and four-layer systems (optical fiber–metal–analyte), as depicted in Fig. 3.

This electromagnetic analysis of light reflection on a multilayer system was solved by the Maxwell’s equations subjected to boundary conditions. The Maxwell’s equation states that the relationships between fundamental electromagnetic quantities, as the electric field vector E and the magnetic field vector H. A schematic illustration of the system is presented in Fig. 11. The amplitude of E and H vectors are related to the formula within the framework of transfer matrix formalism, Eq. 11:

$$\left[ {\begin{array}{*{20}c} {E_0 } \\ {H_0 } \\ \end{array} } \right] = \left[ M \right] \times \left[ {\begin{array}{*{20}c} {E_N } \\ {H_N } \\ \end{array} } \right]$$
(11)

where [M] is the characteristic matrix of the layered system defined by the following:

$$\left[ M \right] = \left[ {\begin{array}{*{20}c} {M_{11} } {M_{12} } \\ {M_{21} } {M_{22} } \\ \end{array} } \right] = \prod\limits_{k = 1}^{N - 1} {\left( {\left[ {\begin{array}{*{20}c} {\cos \delta _k } {\frac{{ - i\,\sin \delta _k }}{{\eta _k }}} \\ { - i\eta _k \sin \delta _k } {\cos \delta _k } \\ \end{array} } \right]} \right)} $$

δ k , the phase factor of the kth layer is a function of the refractive index \(n_k = \left( {\varepsilon _k \mu _k } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \), the thickness \(d_k = \left( {z_k - z_{k - 1} } \right)\) of this kth layer distributed along the z-axis, the incident angle θ 0, and wavelength λ. This phase factor is defined as:

$$\delta _k = \frac{{2\pi }}{\lambda }n_k \cos \theta _k \times \left( {z_k - z_{k - 1} } \right) = \frac{{2\pi d_k }}{\lambda }\left( {\varepsilon _k - n_0^2 {\kern 1pt} \sin ^2 \theta _0 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} $$

\(\eta _{_k }^{} \), the optical admittance is defined as a function of the polarization states as:

  • \(\eta _k^s = \left( {\frac{{\varepsilon _k }}{{\mu _k }}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \,\cos \theta _k = \left( {\varepsilon _k - n_0^2 {\kern 1pt} \sin ^2 \theta _0 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \) for s-wave (TE).

  • \(\eta _k^p = \left( {\frac{{\varepsilon _k }}{{\mu _k }}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \times \frac{1}{{\cos \theta _k }} = \frac{{\varepsilon _k }}{{\eta _k^s }}\) for p-wave (TM).

Fig. 11
figure 11

Electric and magnetic field vectors of p wave at the inner surface of the multilayer system

Finally, the reflectance R of the whole multilayer structure is provided in terms of Fresnel reflection coefficients (r s and r p ) and then in terms of M elements as (Eqs. 12 and 13):

$$R_s = \left| {r_s } \right|^2 = \left| {\frac{{\left( {M_{11}^s + M_{12}^s \cdot \eta _N^s } \right)\eta _0^s - \left( {M_{21}^s + M_{22}^s \cdot \eta _N^s } \right)}}{{\left( {M_{11}^s + M_{12}^s \cdot \eta _N^{s,p} } \right)\eta _0^s + \left( {M_{21}^s + M_{22}^s \cdot \eta _N^s } \right)}}} \right|^2 $$
(12)
$$R_p = \left| {r_p } \right|^2 = \left| {\frac{{\left( {M_{11}^p + M_{12}^p \cdot \eta _N^p } \right)\eta _0^p - \left( {M_{21}^p + M_{22}^p \cdot \eta _N^p } \right)}}{{\left( {M_{11}^p + M_{12}^p \cdot \eta _N^p } \right)\eta _0^p + \left( {M_{21}^p + M_{22}^p \cdot \eta _N^p } \right)}}} \right|^2 $$
(13)

Power distribution launched in the optical fiber

The power distribution P in (θ in ) included into a solid angle in arriving at the fiber-end face of an optical fiber is generally expressed as \(P_{in} \left( {\theta _{in} } \right)d\theta _{in} \propto \left( {{{\tan \theta _{in} } \mathord{\left/ {\vphantom {{\tan \theta _{in} } {\cos ^2 }}} \right. \kern-\nulldelimiterspace} {\cos ^2 }}\theta _{in} } \right)d\theta _{in} \), where θ in is the launched angle of the rays (Fig. 6). θ in can be expressed as a function of θ 0 from the Snell’s law: \(\theta _{in} = \arcsin \left[ {n_0 \cos \theta _0 } \right]\).

Finally, the power distribution P(θ 0 ) can be written as [17]:

$$P\left( {\theta _0 } \right)d\theta _0 \propto \frac{{\varepsilon _0 \sin \theta _0 \cos \theta _0 }}{{\left( {1 - \varepsilon _0 \cos ^2 \theta _0 } \right)^2 }}d\theta _0 $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanso, M., Cuenot, S. & Louarn, G. Sensitivity of Optical Fiber Sensor Based on Surface Plasmon Resonance: Modeling and Experiments. Plasmonics 3, 49–57 (2008). https://doi.org/10.1007/s11468-008-9055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-008-9055-1

Keywords

Navigation