Skip to main content
Log in

Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The localized surface plasmon resonance of a silver nanoparticle is responsible for its ability to strongly absorb and scatter light at specific wavelengths. The absorption and scattering spectra (i.e., plots of cross sections as a function of wavelength) of a particle can be predicted using Mie theory (for a spherical particle) or the discrete dipole approximation method (for particles in arbitrary shapes). In this review, we briefly discuss the calculated spectra for silver nanoparticles with different shapes and the synthetic methods available to produce these nanoparticles. As validated in recent studies, there is good agreement between the theoretically calculated and the experimentally measured spectra. We conclude with a discussion of new plasmonic and sensing applications enabled by the shape-controlled nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30(5):368–375

    CAS  Google Scholar 

  2. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760

    Article  CAS  Google Scholar 

  3. Velev OD, Kaler EW (1999) In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15(11):3693–3698

    Article  CAS  Google Scholar 

  4. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):7426–7433

    Article  Google Scholar 

  5. Alivisatos AP (2005) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–51

    Article  Google Scholar 

  6. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107(30):7426–7433. doi:10.1021/jp027749b

    Article  CAS  Google Scholar 

  7. Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272(5259):255–258

    Article  CAS  Google Scholar 

  8. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540. doi:10.1126/science.297.5586.1536

    Article  CAS  Google Scholar 

  9. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol. 25. Springer, Berlin

    Google Scholar 

  10. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem 262(2):137–156. doi:10.1006/abio.1998.2759

    Article  CAS  Google Scholar 

  11. Quinten M (2001) Local fields close to the surface of nanoparticles and aggregates of nanoparticles. Appl Phys B 73(3):245–255

    CAS  Google Scholar 

  12. Schwartzberg AM, Grant CD, Wolcot A, Talley CE, Huser TR, Bogomolni R, Zhang JZ (2004) Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J Phys Chem B 108(50):19191–19197. doi:10.1021/jp048430p

    Article  CAS  Google Scholar 

  13. Halas NJ (2005) Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull 30(5):362–367

    CAS  Google Scholar 

  14. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface Plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110(32):15666–15675. doi:10.1021/jp0608628

    Article  CAS  Google Scholar 

  15. Sun Y, Xia Y (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst (Lond) 128:686–691

    Article  CAS  Google Scholar 

  16. Wiley BJ, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40(10):1067–1076. doi:10.1021/ar7000974

    Article  CAS  Google Scholar 

  17. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325. doi:10.1002/smll.200701295

    Article  CAS  Google Scholar 

  18. Mie G (1908) Contribution to the optical properties of turbid media, in particular of colloidal suspensions of metals. Anal Phys Leipzig 25:377–452. doi:10.1002/andp.19083300302

    Article  CAS  Google Scholar 

  19. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491–1499. doi:10.1364/JOSAA.11.001491

    Article  Google Scholar 

  20. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B 64(23):235402–235410

    Article  Google Scholar 

  21. Fuchs R (1975) Theory of the optical properties of ionic crystal cubes. Phys Rev B 11(4):1732–1740. doi:10.1103/PhysRevB.11.1732

    Article  CAS  Google Scholar 

  22. Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectic environment. J Phys Chem B 107(3):668–677. doi:10.1021/jp026731y

    Article  Google Scholar 

  23. Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li ZY, Ginger D, Xia Y (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7(4):1032–1036. doi:10.1021/nl070214f

    Article  CAS  Google Scholar 

  24. Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett 8:2077–20781

    Article  CAS  Google Scholar 

  25. Ajayan PM, Marks LD (1988) Quasimelting and phases of small particles. Phys Rev Lett 60(7):585–587. doi:10.1103/PhysRevLett.60.585

    Article  CAS  Google Scholar 

  26. de Mongeot EB, Cupolillo A, Valbusa U, Rocca M (1997) O2 dissociation on Ag(001): the role of kink sites. Chem Phys Lett 270(3–4):345–350

    Article  Google Scholar 

  27. Wiley BJ, Sun Y, Xia Y (2005) Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 21(18):8077–8080

    Article  CAS  Google Scholar 

  28. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi:10.1126/science.1077229

    Article  CAS  Google Scholar 

  29. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44(14):2154–2157. doi:10.1002/anie.200462208

    Article  CAS  Google Scholar 

  30. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3(7):955–960. doi:10.1021/nl034312m

    Article  CAS  Google Scholar 

  31. Wiley BJ, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4(9):1733–1739. doi:10.1021/nl048912c

    Article  CAS  Google Scholar 

  32. Kim MH, Lu X, Wiley BJ, Lee EP, Xia Y (2008) Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4. J Phys Chem C 112(21):7872–7876. doi:10.1021/jp711662f

    Article  CAS  Google Scholar 

  33. Wiley BJ, Xiong Y, Li ZY, Yin Y, Xia Y (2006) Right bipyramids of silver: a new shape derived from single twinned seeds. Nano Lett 6(4):765–768

    Article  CAS  Google Scholar 

  34. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chlorauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901. doi:10.1021/ja039734c

    Article  CAS  Google Scholar 

  35. Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15(7):1197–1208. doi:10.1002/adfm.200400091

    Article  CAS  Google Scholar 

  36. Xiong Y, Washio I, Chen J, Cai H, Li Z-Y, Xia Y (2006) Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of metal nanoplates in aqueous solutions. Langmuir 22(20):8563–8570. doi:10.1021/la061323x

    Article  CAS  Google Scholar 

  37. Xiong Y, Siekkinen AR, Wang J, Yin Y, Kim MJ, Xia Y (2007) Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J Mater Chem 17:2600–2602. doi:10.1039/b705253g

    Article  CAS  Google Scholar 

  38. Sun Y, Mayers B, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3(5):675–679. doi:10.1021/nl034140t

    Article  CAS  Google Scholar 

  39. McLellan JM, Siekkinen A, Chen J, Xia Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 417(1–3):122–126. doi:10.1016/j.cplett.2006.05.111

    Article  Google Scholar 

  40. McLellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7(4):1013–1017. doi:10.1021/nl070157q

    Article  CAS  Google Scholar 

  41. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038. doi:10.1021/nl0515753

    Article  CAS  Google Scholar 

  42. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface Plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105(12):2343–2350. doi:10.1021/jp002906x

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NSF (DMR-0451788) and ACS (PRF-44353-AC10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younan Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobley, C.M., Skrabalak, S.E., Campbell, D.J. et al. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 4, 171–179 (2009). https://doi.org/10.1007/s11468-009-9088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9088-0

Keywords

Navigation